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Identification and clinical 
validation of diverse cell‑death 
patterns‑associated prognostic 
features among low‑grade gliomas
Wenyong Yang 1,5, Hui Yu 1,5, Qingqiang Lei 2,5, Chunlan Pu 1,5, Yuanbiao Guo 1* & 
Liangbin Lin 1,3,4*

Low-grade glioma (LGG) is heterogeneous at biological and transcriptomic levels, and it is still 
controversial for the definition and typing of LGG. Therefore, there is an urgent need for specific 
and practical molecular signatures for accurate diagnosis, individualized therapy, and prognostic 
evaluation of LGG. Cell death is essential for maintaining homeostasis, developing and preventing 
hyperproliferative malignancies. Based on diverse programmed cell death (PCD) related genes and 
prognostic characteristics of LGG, this study constructed a model to explore the mechanism and 
treatment strategies for LGG cell metastasis and invasion. We screened 1161 genes associated with 
PCD and divided 512 LGG samples into C1 and C2 subtypes by consistent cluster analysis. We analyzed 
the two subtypes’ differentially expressed genes (DEGs) and performed functional enrichment 
analysis. Using R packages such as ESTIMATE, CIBERSOTR, and MCPcounter, we assessed immune 
cell scores for both subtypes. Compared with C1, the C2 subtype has a poor prognosis and a higher 
immune score, and patients in the C2 subtype are more strongly associated with tumor progression. 
LASSO and COX regression analysis screened four characteristic genes (CLU, FHL3, GIMAP2, and 
HVCN1). Using data sets from different platforms to validate the four-gene feature, we found that the 
expression and prognostic correlation of the four-gene feature had a high degree of stability, showing 
stable predictive effects. Besides, we found downregulation of CLU, FHL3, and GIMAP2 significantly 
impairs the growth, migration, and invasive potential of LGG cells. Take together, the four-gene 
feature constructed based on PCD-related genes provides valuable information for further study of the 
pathogenesis and clinical treatment of LGG.

Keywords  Diverse programmed cell death, LGG, Tumor immunology, Prognostic features, CLU, FHL3, 
GIMAP2, HVCN1

Glioma is a broad term describing neuroepithelial tumors of glial or supportive cells originating in the central 
nervous system (CNS)1. Glial cells are the most abundant cell type in the CNS, surrounding, isolating, and 
providing nutrients and oxygen to neurons. WHO classifies gliomas as restricted gliomas (WHO I), low-grade 
gliomas (LGG; WHO II-III), and malignant gliomas (GBM; WHO IV)2. Gliomas constitute 24% of all primary 
brain and central nervous system tumors. These neoplasms exhibit a wide range of histological characteristics, 
spanning from benign ependymomas to grade IV glioblastoma multiforme, which is the most aggressive and 
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lethal form3,4. Malignant brain tumors are more common in men, while meningiomas and other benign tumors 
are more common in women. The incidence of glioma varies according to its histological subtype. Pilocytic 
astrocytomas are more prevalent among children and adolescents, while LGG exhibit a peak incidence between 
the ages of 30 and 40. GBM, on the other hand, predominantly affects individuals aged 60 to 70 years5,6.

LGGs are slow-growing glial tumors with malignant transformation potential. In 2021, WHO reclassified 
LGG based on classical histopathological features and key molecular markers, including isoacid dehydrogenase 
(IDH) mutations and 1p/19q co-deletion status, reflecting a stronger correlation between prognosis and molecu-
lar diagnostic features2. Despite recent advancements in the diagnosis and treatment of LGGs, some patients 
may experience malignant transformation of their LGGs into high-grade gliomas (HGGs). This progression 
results in a diminished response to therapeutic interventions and a poorer overall prognosis for the disease7. 
Consequently, there is an urgent need to identify specific and practical molecular signatures that can facilitate 
accurate diagnosis, enable individualized therapeutic approaches, and provide reliable prognostic evaluations 
for patients with LGGs8,9.

According to the triggering mechanism, cell death is divided into accident cell death (ACD) and programmed 
cell death (PCD). ACD is an uncontrolled biological process, whereas PCD involves tightly regulated signaling 
cascades and molecular effector mechanisms. So far, the defined PCD includes apoptosis, autophagy-dependent 
cell death, lysosome-dependent cell death, necroptosis, ferroptosis, cuproptosis, pyroptosis, netotic cell death, 
entotic cell death, parthanatos, oxeiptosis, and alkaliptosis10–12.

Autophagy-dependent cell death is a kind of PCD driven by the molecular mechanism of autophagy. The 
process of autophagy involves the sequential formation of three distinct membrane structures, namely, the 
phagosome, the autophagosome, and the autolysosome. More than 40 autophagy-related genes/proteins (ATGs) 
play key roles in autophagy membrane dynamics and processes13–16. Apoptosis is the process by which living 
organisms remove damaged or unnecessary cells. Apoptotic vesicles are phagocytosed by macrophages, leaving 
surrounding cells undisturbed, which does not trigger an inflammatory response17,18. Lysosome-dependent cell 
death (LCD) is a form of PCD mediated by hydrolytic enzymes that are released into the cytosol after lysosomal 
membrane permeabilization19. Necroptosis is a kind of programmed necrosis with morphological characteris-
tics similar to necrosis. Necrosis can be caused by a variety of stimuli, including death receptors (TNFRSF1A 
and FAS), nucleic acid sensors (Z-DNA–binding protein 1 [ZBP1, also known as DAI], retinoic acid receptor 
responder 3 [RARRES3, also known as RIG1], transmembrane protein 173 [TMEM173, also known as STING]), 
toll-like receptors (toll-like receptor 3 [TLR3] and TLR4), and adhesion receptors20. Ferroptosis is a type of PCD 
that depends on iron and lipotoxicity. Ferroptosis can be induced in a typical manner by inactivating GPX4, 
the main protective mechanism of biofilms against peroxidation damage, and in an atypical manner by increas-
ing the labile iron pool21,22. Cuproptosis is a newly discovered PCD triggered by copper, which correlates with 
multiple diseases23. Pyroptosis is a form of PCD driven by the activation of the inflammasome, which is a cyto-
plasmic multiprotein complex responsible for the release of interleukin (IL) 1 family members (IL1B and IL18), 
the formation of apoptosis-associated speck-like proteins (ASC) spots, and the activation of pro-inflammatory 
caspase24. Parthanatos is activated by oxidative stress-induced DNA damage and chromatinolysis, which is a 
form of PCD dependent on poly [ADP-Ribose] polymerase 1 (PARP1)25. Oxeiptosis is driven by the activation 
of the KEAP1-PGAM5-AIFM1 pathway, and it’s a novel oxygen radical-induced caspase-independent PCD26. 
Alkaliptosis is a novel type of RCD driven by intracellular alkalinization27.

Cell death can manifest in various forms as a response to different stressors, particularly oxidative stress28. A 
loss of control over single or mixed modes of cell death can contribute to the development of human diseases, 
such as cancer, neurodegenerative disorders, autoimmune conditions, and infectious diseases29–32. Many studies 
have shown that PCD plays an important role in the development and metastasis of tumors, cells that do not 
drip PCD properly may develop into malignant tumor cells33. However, the precise role of PCD in LGGs has 
been less extensively studied. Investigating the alterations in PCD pathways in LGGs may provide new mark-
ers or therapeutic targets, potentially improving the prognosis and treatment outcomes for patients with these 
tumors. In addition, the prognostic value of PCD-related genes and the tumor microenvironment (TME) in 
LGG remain unknown. In this study, we investigated the expression and significance of PCD-related genes in 
LGG and established a new index, cell death RiskScore (CDR), to predict the efficacy and prognosis of LGG 
therapeutic interventions.

Materials and methods
Data acquisition and preprocessing
The clinical follow-up information and tissue expression data of LGG patients, including astrocytomas and 
low-grade oligodendrogliomas, were downloaded from the TCGA public database and CGGA database, and 
the data were processed as follows: (1) The samples without clinical follow-up information were removed. (2) 
Transform the set into gene symbol. (3) Take the maximum value when multiple Gene Symbol expressions exist. 
(4) Samples without expression profile data were removed.

PCD-related genes contained 12 key regulatory genes of PCD, including 580 apoptosis-related genes, 367 
autophagy-related genes, 220 lysosome-dependent cell death-related genes, 101 necroptosis-related genes, 88 
ferroptosis-related genes, 52 pyroptosis-related genes, 15 entotic cell death-related genes, 14 cuproptosis-related 
genes, 9 parthanatos-related genes, 8 netotic cell death-related genes, 7 alkaliptosis-related genes, and 5 oxeipto-
sis-related genes. Finally, 1161 PCD-related genes were included in the analysis (Table S1)11,12.

After preprocessing, 512 samples were obtained from TCGA-LGG, and 420 patients from CGCA-
mRNAseq_693, 172 patients from CGCA-mRNAseq_325, and 159 patients from CGCA-mRNA-array_301 
databases, respectively (Table1).
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Consistent cluster analysis using the ConsensusClusterPlus algorithm
The TCGA expression profile data were filtered to remove genes whose expression level was less than 1, and 
then univariate COX analysis was performed under the threshold of P < 0.05 to filter out unnecessary genes. 
ConsensusClusterPlus was used to uniformly cluster TCGA samples by obtaining PCD genes associated with 
prognosis (V1.48.0; Parameters: pFeature = 1, pItem = 0.8, distance = "spearman ", rep = 100).

Division of training set and verification set
According to the ratio of training set: verification set = 1:1, 512 samples in the TCGA data set were randomly 
sampled into groups, which were divided into the training set and verification set. The training set and validation 
set were selected according to the following conditions: (1) The age distribution, gender, follow-up time, and 
mortality ratio of patients in the two groups were similar; (2) After the clustering of gene expression profiles, the 
number of samples was similar between random groups. This selection generates 256 samples in the training set 
and 256 samples in the verification set.

Lasso cox regression analysis
To reduce the number of genes found in the risk model, we used lasso regression for prognostic genes. The lasso 
method results in a finer model by constructing a penalty function that allows the coefficient to shrink, setting 
part of the coefficient to zero, and preserving the advantage of subset shrinkage. R-package glmnet was used for 
lasso cox regression to analyze the motion trajectories of each variable. Then, the optimal model is constructed 
through five cross-validations, and the confidence interval under each lambda is analyzed to find out the number 
of target genes.

Cell transfection
Small interfering RNA against negative control (NC-siRNA), CLU (CLU-siRNA), FHL3 (FHL3-siRNA), GIMAP2 
(GIMAP2-siRNA) and HVCN1 (HVCN1-siRNA) were all synthesized by GenePharma (Shanghai, China). The 
sequences were as follows: si CLU-Homo-880, 5′-CCC​GCC​AAC​AGA​AUU​CAU​ATT-3′; si-CLU -Homo-1206, 
5′-GCG​AAG​ACC​AGU​ACU​AUC​UTT-3′; si FHL3-Homo-179, 5′- GAG​CGA​GUC​AUU​UGA​CUG​UTT-3′; si 
FHL3-Homo-816, 5′- GGA​GAA​CUC​UUU​GCA​CCU​ATT-3′; si GIMAP2 -Homo-617, 5′- GCG​AAU​CUG​UGC​
CUU​UAA​UTT-3′; si GIMAP2 -Homo-524, 5′- CCA​CAA​GGA​AGA​CCU​CAA​UTT-3′; si HVCN1-Homo-519, 
5′- CAG​CCC​GAC​AAG​AAU​AAC​UTT-3′; si HVCN1-Homo-247, 5′- CCU​GGA​ACA​UCA​ACU​ACA​ATT-3′; 
Cell transfection was conducted by using Hieff Trans Liposomal Transfection Reagent (Yeasen Biotechnology 
(Shanghai)) according to the manufacturer’s protocol.

MTT and CCK‑8 assays
Cell viability assays were conducted on SW1088 cells using two different methods: MTT and CCK-8 assays. 
SW1088 cells were a gift by Dr. Jingwen Jiang from Sichuan University. SW1088 cells were plated in a 96-well 

Table 1.   Cohorts information.

Clinical features TCGA-LGG CGCA-mRNA-array_301 CGCA-mRNAseq_325 CGCA-mRNAseq_693

OS

 0 386 85 82 224

 1 126 74 30 197

DFS

 0 308

 1 165

Grade

 G2 248

 G3 263

IDH mutation

 WT 293

 Mut 127

Gender

 Male 285

 Female 227

Age

 ≥ 60 69

 < 60 443

Recurrence

 Yes 165

 No 310
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plate at a density of 3000 cells per well and cultured in 100 µl of DMEM supplemented with 10% FBS. For the 
CCK-8 assay, 10 µl of CCK-8 solution, which was previously diluted in 100 µl of complete culture medium, was 
added to each well. After incubating the cells for 1 h at 37 °C in the dark, the cell viability was assessed by meas-
uring the absorbance at 450 nm using a microplate reader. In the MTT assay, 10 µl of MTT solution was added 
to each well after 48 h of cell culture, followed by a 2-h incubation. The culture medium was then removed, and 
the optical density was measured at 490 nm using a microplate reader.

Wound healing assay
To perform the wound healing assay, SW1088 cells were seeded in a six-well plate and allowed to grow until 
a complete monolayer was formed. Subsequently, a controlled scratch was made across the cell layer using a 
200-µl plastic pipette tip to create a "wound." The cells were then gently washed three times with PBS to remove 
any debris. After creating the scratch and washing, we used the standard culture medium without fetal bovine 
serum to observe cell migration. Time-lapse images of the wounds were captured at specific intervals using an 
IX71 inverted microscope from Leica Corporation. These images were further analyzed using ImageJ software to 
measure the rate of cell migration and wound closure. The assay was conducted in triplicate to ensure accuracy 
and reproducibility, following a predetermined study protocol.

Transwell assay
The transwell assay is a widely used method to assess cell invasion potential. In this assay, Matrigel-coated tran-
swell chambers are employed to mimic the extracellular matrix and create a barrier for cell migration. Transfected 
cell lines are cultured and seeded in the upper chamber, which is filled with serum-free medium. The lower 
chamber is filled with complete culture medium, providing a chemoattractant for cell migration. During the 
incubation period, cells with invasive properties can penetrate the Matrigel layer and migrate towards the lower 
chamber. Non-invading cells remaining in the upper chamber are carefully removed. The invaded cells in the 
lower chamber are then fixed, stained, and visualized under a microscope. Quantification of cell invasion is per-
formed by counting the number of invaded cells in multiple fields of view. Typically, ten randomly selected fields 
are analyzed to obtain a representative measurement. This allows for a reliable assessment of cell invasiveness.

Statistical analysis
Data are presented as means ± SEM. Two-tailed unpaired t test was used to compare the difference between 
two groups. One-way ANOVA followed by Turkey’s multiple comparisons test was used to compare differences 
between multiple groups. An adjusted P‐value < 0.05 was considered statistically significant. The level of signifi-
cance is indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. Statistical analysis was performed using Prism software.

Results
Workflow of this study
We identified 512 patients from TCGA-LGG, 420 patients from CGCA-mRNAseq_693, 172 patients from CGCA-
mRNAseq_325, and 159 patients from CGCA-mRNA-array_301 databases for training and validation cohorts. 
And, 1161 PCD-related genes were brought into the analysis. The flow diagram of this study is showed in the 
Fig. 1.

Identification of subtypes based on PCD‑related gene
We extracted the expression of 1161 PCD-related genes from the TCGA LGG dataset. 590 genes associated 
with LGG prognosis were identified by univariate cox analysis in R (Table S2) (P < 0.05). Non-negative matrix 
factorization (NMF) was performed to cluster LGG samples based on the expression of 590 genes. The optimal 
clustering of k = 2 was selected by synthesizing and residuals sum of squares, and two subtypes (C1 and C2) were 
obtained (Fig. 2A–C).

Subsequently, we conducted a comparative analysis of the prognoses associated with the two identified sub-
types. Our findings revealed that subtype C2 exhibited a poorer prognosis in terms of both overall survival (OS) 
(Fig. 2D) and disease-free survival (DFS) (Fig. 2E). These results indicate the existence of significant differences 
in survival rates between the two subtypes.

Comparison and analysis of clinical features between subtypes
Next, we analyzed and compared the clinical characteristics of the two subtypes. Our analysis demonstrated that 
the C1 group exhibited a significantly higher survival rate compared to the C2 group (Fig. 3A), and the tumor 
recurrence rate within the C1 group was lower than that observed in the C2 group (Fig. 3B). Furthermore, the 
proportion of cases classified as G3, which is associated with a poor prognosis, was lower in the C1 group relative 
to the C2 group (Fig. 3C). These results indicated that the C1 group has a better prognosis and clinical features.

There are identified six types of immune infiltration in human tumors, including Cluster 1 (wound healing), 
Cluster 2 (INF-γ dominant), Cluster 3 (inflammatory), Cluster 4 (lymphocyte depleted), Cluster 5 (immunologi-
cally quiet), and Cluster 6(TGF-β dominant). Comparing our stratified method with this stratified method, we 
found that most LGG are C4 and C5, and the proportion of Cluster 5 in the C1 group was higher than the C2 
group (Fig. 3D and E). A further comparative analysis of the prognoses between Cluster 4 and Cluster 5 revealed 
significant differences in overall survival (OS) (Fig. 3F) and disease-free survival (DFS) (Fig. 3G). Cluster 5 
exhibited a superior prognosis compared to Cluster 4, indicating that the PCD-subtype C1 encompasses a higher 
proportion of immune subtypes associated with favorable prognoses.
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Subtypes with good prognosis had lower immune scores
ESTIMATE package was performed in R software to evaluate three immune scores of the two subtypes (C1 
and C2), including the StromalScore, ImmuneScore, and ESTIMATEScore. The results indicated that the C1 
subtype exhibited a lower immune score compared to the C2 subtype (Fig. 4A). Subsequently, the MCPcoun-
ter and CIBERSORT packages were employed to analyze the scores of ten and twenty-two immune cell types, 
respectively, between the C1 and C2 subtypes. Our findings revealed that C1 had lower immune cell scores than 
C2, including T cells, CD8 T cells, B lineage cells, monocytic lineage cells, myeloid dendritic cells, endothelial 
cells, fibroblasts, M1 macrophages, and M2 macrophages (Fig. 4B and C). Furthermore, the heatmap of immune 
scores also demonstrated that C1 had lower immune cell scores compared to C2 (Fig. 4D).

Functional analysis of pathways between subtypes
To identify the DEGs of two subtypes, we calculated 2372 DEGs, containing 1430 up-regulated genes and 942 
down-regulated genes, by using limma packets and filtering according to the threshold of |log2FC| > 1 and 
FDR < 0.01 (Fig. 5A). DEGs are shown in Table S3. The heat map showed all the DEGs of C1 and C2 (Fig. 5B).

GO functional enrichment analysis of 1800 DEGs was performed using Goplot R package. The results showed 
that the main up-regulated pathways enriched were modulation of chemical synaptic transmission, regulation of 
trans-synaptic signaling, regulation of membrane potential, synapse organization, and vesicle-mediated transport 
in the synapse (Fig. 5C). Furthermore, the main down-regulated pathways enriched were positive regulation 
of cytokine production, leukocyte-mediated immunity, positive regulation of response to external stimulus, 
mononuclear cell differentiation, and negative regulation of immune system process (Fig. 5D).

We also performed KEGG pathway enrichment analysis for the DEGs. We found that the main up-regulated 
pathways enriched were neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling 
pathway, retrograde endo cannabinoid signaling, and morphine addiction (Fig. 5E). Moreover, the main down-
regulated pathways enriched were cytokine-cytokine receptor interaction, osteoclast differentiation, chemokine 
signaling pathway, tuberculosis, and JAK-STAT signaling pathway (Fig. 5F).

Construction of the prognostic risk model
To build the RiskScore model, 512 patients were randomly grouped, and the training set and the test set both 
had 256 samples. 590 prognosis-associated genes were identified by using univariate regression Cox risk model 
analysis of survival data (P < 0.01 was selected as threshold filtering) (Table S4).

To reduce the number of genes, the trajectories of the independent variables were analyzed using lasso Cox 
regression analysis with the R-package glmnet (Fig. 6A). The confidence intervals under each lambda value 

Figure 1.   Flowchart for comprehensive analysis of programmed cell death in postoperative patients with LGGs.
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were analyzed through cross-validation. We identified 19 genes as the target genes, indicating that the model is 
applicable, with lambda = 0.04627505 (Fig. 6B).

To further reduce the number of target genes, we performed the Akaike information criterion (AIC) method 
to produce a better model with fewer parameters. And we screened four genes (CLU, FHL3, GIMAP2, and 
HVCN1) out of 19 genes. The prognostic KM curves indicated that CLU, FHL3, GIMAP2 and HVCN1 were 
negatively correlated with the survival of patients in the TCGA training set (Fig. 6C–F).

Using the ggRISK package, we calculated a cell death related RiskScore (CDR) for each sample based on the 
four gene expression levels. The results showed that higher CDR is related to a worse prognosis (Fig. 7A). And 
using R package timeROC, we analyzed the prognostic prediction efficiency at 1 year, 3 years, and 5 years, and the 
result showed that the model’s Area Under Curves (AUCs) was higher than 0.7 (Fig. 7B). The KM curve showed 
that the high CDR group had a significantly worse prognosis than the low CDR group (Fig. 7C).

Validation of the prognostic risk model
To verify the stability of the prognostic risk model, we carried out the same model analysis on the TCGA test 
dataset. The results showed that higher CDR is related to worse prognosis in the TCGA test dataset (Fig. 7D). 
And we analyzed the prognostic prediction efficiency at 1 year, 3 years, and 5 years, and we found that the model’s 
AUCs was higher than 0.7 (Fig. 7E). The KM curve showed that the high CDR group had a significantly worse 
prognosis than the low CDR group in the TCGA test dataset (Fig. 7F).

We further analyzed the distribution of the CDR across the complete TCGA dataset, and the results showed 
that LGG patients with higher CDR exhibited a worse prognosis (Fig. 7G). The analysis of the prognostic predic-
tion efficiency indicated that the AUC values of the model were higher than 0.7 (Fig. 7H). The Kaplan–Meier 

Figure 2.   Characterizing LGG subtypes: NMF clustering, prognostic survival, and disease progression. 
(A) Consensus map of NMF clustering. (B,C) The cophenetic distribution (B) and RSS distribution (C) at 
rank = 2–10. (D,E) Overall survival (OS) time prognostic survival curve (D) and disease-free survival (DFS) 
prognostic survival curve (E) of LGG subtypes.
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curve demonstrated that the high CDR group had a significantly poorer prognosis among all LGG patients 
(Fig. 7I).

External datasets verified the prognostic risk model
To further verify the universality and stability of the four gene signatures we screened, three CGGA datasets 
(CGCA-mRNAseq_301, CGCA-mRNAseq_325, and CGCA-mRNA-array_693 database) were selected to verify 
the CDR.

Consistent with the above conclusions, higher CDR is related to worse prognosis in all three CGGA datasets 
(Fig. 8A,D,G). The analysis of the prognostic prediction efficiency indicated that the AUCs of the model were 
higher than 0.7 (Fig. 8B,E,H). The KM curve showed that the high CDR group had a significantly worse prognosis 
in all LGG patients (Fig. 8C,F,I).

Correlation analysis of the prognostic risk model with clinical features and pathways
We further analyzed prognostic associations of CDR with different clinical features. In different grade groups, 
gender groups, age groups, and IDH mutation groups, the group with high CDR had a worse prognosis 
(Fig. 9A–H), indicating that the model with the four-gene feature had a good predictive ability. Moreover, the 
higher grade was associated with higher CDR (Fig. 9I,J).

To study the relationship between CDR and the biological function, we analyzed the gene expression pro-
files of different samples by single-sample GSEA. We analyzed the correlation between the KEGG pathway 
and CDR, and we found that the top 10 KEGG positively correlated with CDR, including COMPLEMENT_
AND_COAGULATION_CASCADES, INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION, 
LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION, ARACHIDONIC_ACID_METABOLISM, and PATHO-
GENIC_ESCHERICHIA_COLI_INFECTION. We also found that the top 10 KEGG pathways that are negatively 
correlated with CDR, including ERBB_SIGNALING_PATHWAY, CARDIAC_MUSCLE_CONTRACTION, TER-
PENOID_BACKBONE_BIOSYNTHESIS, TASTE_TRANSDUCTION and NEUROACTIVE_LIGAND_RECEP-
TOR_INTERACTION (Fig. 10A,B).

We further analyzed the correlation between CDR and immune score and found that the StromalScore, 
ImmuneScore, and ESTIMATEScore were positively correlated with CDR (Fig. 10C–E).

Figure 3.   Exploring clinical and immune features of LGG subtypes: survival, tumor characteristics, and 
immune subtype associations. (A–D) Comparison of the distribution of two subtypes in clinical features such as 
survival rate (A), tumor recurrence rate (B), tumor grade (C), and immune subtypes (D) in the TCGA data set. 
(E) Comparison of distribution of immune subtypes in the two subtypes. (F) Comparison of two subtypes with 
existing immune subtypes. (F–G) OS time prognostic survival curve (F) and DFS prognostic survival curve (G) 
of LGG subtypes between C4 and C5 immune subtypes.
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Knockdown of CLU, FHL3, and GIMAP2 inhibits growth and migration in LGG cells
To further elucidate the roles of four genes in LGG, we individually knocked down these genes in LGG cells 
(SW1088 cells). Through MTT and CCK-8 experiments, we observed a decrease in cell viability upon knockdown 
of CLU, FHL3, and GIMAP2, suggesting their roles in suppressing cell growth (Fig. 11A and B). Conversely, 
knockdown of HVCN1 did not significantly affect cell growth, possibly due to its low mRNA expression levels. 
Moreover, we conducted wound healing assays, which revealed a weakened migratory ability in cells with CLU, 
FHL3, and GIMAP2 knockdown (Fig. 11C and E). Consistently, transwell experiments demonstrated a reduced 
invasive capacity of cells lacking CLU, FHL3, and GIMAP2 (Fig. 11D and F). These findings collectively indicate 
that CLU, FHL3, and GIMAP2 exert influence on the growth and migration of SW1088 cells. In summary, our 
results highlight the pivotal roles of CLU, FHL3, and GIMAP2 in modulating the proliferation and migratory 
capabilities of LGG cells.

Besides, by multivariate COX regression analysis of the clinical independence of four-gene features in the 
TCGA dataset, we found that CDR was significantly correlated with survival rate (Fig. 12). Together, these data 
indicate that our four-gene signature model has good clinical predictive performance.

Figure 4.   Comparing immune scores and profiles among LGG subtypes: insights from TCGA dataset. (A–C) 
Comparison of ESTIMATED immunity scores (A), CIBERSOTR immunity scores (B), and MCPcounter 
immune scores (C) between subtypes in the TCGA dataset. (D) Heat map comparing immune scores among 
subtypes in the TCGA data set by three immune software.
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Figure 5.   Exploring differentially expressed genes and pathways in LGG subtypes: volcano maps, heatmaps, 
and functional annotations. (A) Volcanic maps of differentially expressed genes (DEGs) of two subtypes. 
(B) Heat maps of DEGs of two subtypes created by the R programming language and the RStudio integrated 
development environment. (C,D) Annotated map of biological processes (BP) of subtypes of differentially 
up-regulated genes (C) and subtypes of differentially down-regulated genes (D). (E,F) Annotated KEGG map of 
subtypes differential up-regulation gene (E) and subtypes differential down-regulation gene (F).
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Discussion
LGG is a heterogeneous disease regarding molecular characteristics, tumorigenesis, therapeutic response, and 
clinical outcome. Recurrence or malignant progression of LGG is inevitable even after surgical excision, radio-
therapy, chemotherapy, and immunotherapy8,34. Consequently, there is an urgent need to identify specific and 
practical molecular signatures that can facilitate accurate diagnosis, enable individualized therapeutic approaches, 
and provide reliable prognostic evaluations for patients with low-grade gliomas. Many studies have shown that 
PCD plays an important role in biological processes and has been confirmed to be related to the occurrence 
and metastasis of malignant tumors33,35. In this study, we constructed a novel four-gene marker (CLU, FHL3, 
GIMAP2, and HVCN1) with good prognostic ability based on PCD-related genes and verified the prognostic 
ability of this marker in three other independent databases. Based on the expression of the four-gene marker, 
we established a new index, cell death related RiskScore (CDR), to predict the efficacy and prognosis of LGG 
therapeutic interventions.

CLU (Clusterin) is a stress-activated, ATP-independent molecular chaperone and is associated with the devel-
opment of different physiological and pathological processes, including carcinogenesis and tumor progression36,37. 
It plays a crucial role in maintaining protein balance, controlling survival signals, and preventing cell death path-
ways and genetic regulation38–40. Despite limited research on CLU in LGG, our screening results suggest that CLU 
could serve as a promising prognostic indicator for LGG. Further investigation into its role in LGG is warranted.

FHL3 (four and a half LIM protein 3) play an important role in cardiovascular disease and muscle prolifera-
tion by regulating signal transduction and cell growth. FHL3 is often overexpressed or downregulated in different 
cancers, and there is growing evidence of a link between FHL3 and tumor biology41. On the one hand, FHL3 can 
play a role as a cancer protein in some cancers, promoting tumor progression through phosphorylation. On the 
other hand, FHL3 can act as a tumor suppressor and affect the expression of downstream genes. Thus, FHL3 is 
thought to have a dual role in cancer progression, reflecting its complex role in cancer42. FHL3 serves as a binding 
partner of GSK3β and facilitates tumor metastasis in Pancreatic Ductal Adenocarcinoma (PDAC) by imped-
ing the ubiquitin-mediated degradation of snail1 and twist143. In glioma, FHL3 acts as a stemness suppressor 

Figure 6.   Investigating independent variable trajectories and survival associations of key genes in LGG: 
coefficients, confidence intervals, and KM curves. (A) Independent variable trajectories: vertical axis 
(representing the coefficient of the independent variable) and horizontal axis (representing the logarithm of the 
dependent variable). (B) Confidence intervals for each λ. C-F. KM Curves of CLU (C), FHL3 (D), GIMAP2 (E), 
and HVCN1 (F) in TCGA training set.
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in regulating the Smad2/3–SOX4–SOX2 axis44. Our screening indicates that FHL3 may serve as a prognostic 
indicator for LGG, potentially attributed to its role in the Smad2/3–SOX4–SOX2 axis.

GIMAP2 (GTPases of immunity-associated protein 2) belongs to the GIMAPs family, a unique family of 
GTPases that control lymphocyte apoptosis and play a central role in lymphocyte maturation and lymphocyte-
related diseases45. Limited research has been conducted on GIMAP2. GIMAP2 was found to form a GTP-
dependent scaffold, with its C-terminal amino acid extension guiding it to the lipid droplet. GIMAP2 expression 
was consistently observed in all examined human lymphoma T cell lines, while other GIMAP members were 
suppressed in these tumor cell lines45. Abnormal GIMAP2 expression affects the progression of oral squamous 
cell carcinoma by promoting the cell cycle and inhibiting cell apoptosis46. As a newly discovered protein, GIMAP2 
has been identified through screening as a potential prognostic marker for LGG. Further investigation into its 
function in LGG is warranted.

HVCN1 (hydrogen voltage-gated channel (1) is the only mammalian voltage-gated proton channel. In human 
B lymphocytes, HVCN1 binds to the B cell receptor (BCR) and is required to optimize BCR signaling and 
REDOX control. HVCN1 has expressed in BCR-signaling dependent malignant B cells, such as chronic lym-
phocytic leukemia (CLL) cells47. HVCN1 not only controls signaling following B-cell receptor activation and 
histamine release in basophils but also plays a role in pH-dependent sperm activation and acid secretion in the 

Figure 7.   CDR, survival analysis, and classification performance of four-gene features in LGG: TCGA dataset 
evaluation. CDR, survival time, survival state, and indicated gene expression of the TCGA training set (A), 
the TCGA validation set (D), and the full TCGA dataset (G). ROC curve and AUCs of four-gene features 
classification in the TCGA training set (B), the TCGA validation set (E), and the full TCGA dataset (H). The 
KM survival curve distribution of four-gene features in the TCGA training set (C), the TCGA validation set (F), 
and the full TCGA dataset (I).
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Figure 8.   CDR, survival analysis, and classification performance of four-gene features in cgga databases: 
mRNA expression and prognostic assessment. CDR, survival time, survival state, and indicated gene expression 
of the CGGA-mRNA-array_301 database (A), the CGGA- mRNAseq_325 database (D), and the CGGA- 
mRNAseq_693 database (G). ROC curve and AUCs of four-gene features classification in the CGGA-mRNA-
array_301 database (B), the CGGA- mRNAseq_325 database (E), and the CGGA- mRNAseq_693 database (H). 
The KM survival curve distribution of four-gene features in the CGGA-mRNA-array_301 database (C), the 
CGGA- mRNAseq_325 database (F), and the CGGA- mRNAseq_693 database (I).
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tracheal epithelium48. While the role of HVCN1 in tumor progression remains largely unexplored, our screening 
has identified HVCN1 as a potential prognostic marker for LGG.

In our study, we constructed subtypes of LGG models based on PCD-associated genes. Using DEGs identi-
fied in LGG subtypes, we constructed a four-gene signature (CLU, FHL3, GIMAP2 and HVCN1) prognostic 
risk model and validated it using CGGA gene expression data sets. A risk index (Cell Death related RiskScore, 
CDR) was computed using the expression levels of four gene markers. Our analysis revealed a strong correlation 
between the four gene markers, CDR, and the invasion, growth, and metastasis of LGG tumor cells, indicating 
that the four-gene signature serves as robust biomarkers for predicting the prognosis of LGG.

Figure 9.   Prognostic significance of CDR in different subgroups of LGG patients: gene characteristics and 
clinical factors. (A–H) According to CDR of the four gene characteristics, the patients in G2 group (A), G3 
group (B), female group (C), male group (D), age ≥ 60 group (E), age < 60 group (F), IDH WT group (G) and 
IDH mutation group (H) were divided into two groups, and the prognosis difference between the two groups 
was significant. (I) CDR in G2 and G3 groups of LGGs. (J) CDR in IDH WT group and IDH mutation group of 
LGGs.
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Figure 10.   Correlations of CDR with KEGG Pathway Scores, StromalScore, ImmuneScore, and 
ESTIMATEScore in LGG. (A) Correlation between CDR and ssGSEA KEGG signal pathway score. (B) Heat 
map of the KEGG signal pathway. (C) The correlation between CDR and StromalScore. (D) The correlation 
between CDR and ImmuneScore. (E) The correlation between CDR and ESTIMATEScore.
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Figure 11.   Effects of gene knockdown on cell viability, migration, and invasion in SW1088 Cells: MTT/CCK-8 
assays, wound healing, and transwell analysis. (A,B) Evaluation of cell viability after knockdown of the specified 
genes using the MTT assay (A) and the CCK-8 assay (B) in SW1088 cells. (C) Examination of cell migratory 
abilities upon knockdown of the indicated genes using wound healing assays in SW1088 cells. (D) Assessment 
of cell invasive capacities following knockdown of the indicated genes using transwell assays in SW1088 cells. 
(E,F) Statistical analysis of the wound healing assays mentioned in C (E) and the transwell assays as mentioned 
in D (F).
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While our findings have revealed intriguing phenomena and novel gene signatures, they are not without 
limitations. Although the model we developed using ATGC was effectively validated with gene expression data 
from the CGGA database, additional data from multiple platforms is required to further confirm the validity of 
our model. The four genes identified in this study warrant further investigation through cell experiments and 
animal studies to delineate their role in PCD and LGG, thereby establishing a foundation for their potential 
clinical application in LGG.

Data availability
The data from the TCGA and CGGA data sets in this study are publicly available.
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