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Abstract

Background: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-
microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of
diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic
consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut
microbiota structure and functions in mice.

Results: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced
fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated
with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and
elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed
mice were characterized by shifts in dominant gut bacterial communities, including decreased relative
abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium
lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions,
including lipid and amino acid metabolism.

Conclusions: Caution is required when interpreting data from diet-induced obesity models due to varying
effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary
bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and
to alterations of dominant bacterial communities in the cecum.
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Background
The human intestinal tract harbors trillions of microor-
ganisms referred to as the gut microbiota, which plays
an important role in digestion and host metabolism [1]
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and has been implicated in the development of meta-
bolic diseases, including obesity and type-2 diabetes [2,
3]. However, there is a gap between the increasing num-
ber of studies describing changes in ecosystem structure
as obtained by sequencing [4] and knowledge about mi-
crobial functions and their interactions with diet and
host metabolism [5, 6].
Mouse models of diet-induced obesity have been

widely used to study microbe-host crosstalk in metabolic
diseases. Recent findings pointed at issues related to the
robustness of such models, i.e., results are dependent on
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experimental settings, including animal facilities or diet
composition and texture [5, 7–10]. Nonetheless, mouse
models are very helpful to test the impact of interven-
tions otherwise not possible in human subjects in terms
of, e.g., controlled conditions, invasive sampling, and the
ability to address the causal role of changes in the gut
microbiome [11–13]. Mouse studies have also helped
highlighting the role of single bacterial species in meta-
bolic diseases, such as Akkermansia muciniphila, Chris-
tensenella minuta, Clostridium ramosum (recently
proposed to be reclassified as Erysipelatoclostridium
ramosum [14]), Enterobacter cloacae, and Prevotella
copri, including the investigation of underlying molecu-
lar mechanisms [15–19].
Several mechanisms by which gut microorganisms can

modulate the development of metabolic diseases have
been proposed. Interaction with the host via metabolic
capacities of the gut microbiota is a particular area of
interest, as microbiota members produce myriads of me-
tabolites having many different bioactive properties (e.g.,
regulation of inflammatory and metabolic responses).
Some of the studies aforementioned and several others
have demonstrated the importance of short-chain fatty
acids (SCFA), branched-chain amino acids, or choline
metabolism [18, 20–22]. Bile acid conversion is another
important metabolic feature of the gut microbiota with
major impact on host metabolism, and the therapeutic
potential of intervening with bile acid-dependent path-
ways has already been exploited in metabolic and in-
flammatory disorders [23, 24].
Bile acids are cholesterol-derived compounds synthe-

sized in the liver, which facilitate the intestinal absorp-
tion of lipids but also influence metabolic and
inflammatory signaling pathways, mainly via the farne-
soid X receptor (FXR) and G protein-coupled receptor
TGR5 [24]. Metabolic disorders have been associated
with changes in bile acid composition and concentra-
tions [25, 26]. Moreover, feeding experiments in mice
demonstrated that the addition of 0.5% (w/w) cholic acid
(CA) to a high-fat diet (HFD) prevented weight gain and
associated comorbidities [27, 28], although underlying
interactions with the gut microbiota are unclear. Other
studies in rodents demonstrated positive effects of fatty
and bile acid conjugates on diet-induced non-alcoholic
fatty liver (NAFLD) and hypercholesterolemia [29, 30].
In humans, oral bile acid treatment is common in pa-
tients with primary bile acid synthesis deficiency [31],
but effects on the gut microbiota are unknown.
Germ-free (GF) and conventional mice markedly differ

with respect to bile acid profiles [32]. Intestinal bacteria
can transform primary bile acids via deconjugation, de-
hydroxylation, or dehydrogenation to form the so-called
secondary bile acids [33, 34]. Deconjugation reactions
are catalyzed by multiple bacterial lineages [35]. In
contrast, only a few members of the family Coriobacter-
iaceae, Clostridiaceae, Lachnospiraceae, or Ruminococ-
caceae are known to produce secondary bile acids, and
many of the active strains within these families are not
available from public collections for performing down-
stream experiments to test causal effects [36–38]. Des-
pite this potential of gut microbiota to modulate bile
acid bioavailability and the known anti-microbial proper-
ties of bile acids [39], only few studies have investigated
the impact of primary bile acid supplementation on the
gut microbial ecosystem [40, 41].
The source of dietary fat has also been shown to influ-

ence host metabolism and microbiota-dependent pheno-
types of diet-induced obesity [9, 42, 43]. The response of
GF mice to HFD, i.e., their susceptibility to develop
diet-induced obesity, depends on the type of high-calorie
diet given to the animals, with a particular importance
of dietary fat source [8]. Kübeck et al. [9] demonstrated
that GF mice fed a HFD based on lard were resistant to
diet-induced obesity, whereas those fed palm oil were
not due to lower metabolic rate and more efficient fat
absorption. The main difference between the two diets
was their cholesterol content, with lard-based HFD con-
taining 10 times more. As cholesterol can modulate bile
acid and lipid metabolism, these and other authors pro-
posed that dietary cholesterol content drives the re-
sponse of mice to high-fat diets [9, 44]. Furthermore,
dietary fatty acid (FA) composition can modulate body
weight gain as well as host metabolism [43, 45]. How-
ever, functional implication for the gut microbiota has
not yet been described.
The data introduced above indicate that little is known

about microbiota-host interactions in response to bile
acids and different dietary fat sources. Therefore, the
major goal of the present study was to determine the
importance of the gut microbiota in regulating the im-
pact of dietary bile acid supplementation on the meta-
bolic status of mice and to test the plasticity of these
interactions under conditions of metabolic challenges by
using HFDs varying in fat sources (plant or animal). We
used both GF and specific pathogen-free (SPF) mice to
investigate the impact of microbial colonization. A com-
bination of molecular techniques allowed assessing ef-
fects on the host (in particular lipid profiles) and on the
composition and functions of intestinal microbial
communities.

Methods
Mouse experiments
Animal use was approved by the local institution in
charge (Regierung von Oberbayern, approval no.
55.2.1.54-2532-156-13). All mice were maintained at the
School of Life Sciences Weihenstephan of the Technical
University Munich. Male C57BL/6N GF and SPF mice
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were housed at 22 ± 1 °C and 50–60% relative humidity
with a 12-h light/dark cycle and were fed a standard
chow diet (V1124-300, Ssniff Spezialdiäten GmbH,
Germany). SPF mice were housed in individually venti-
lated cages whereas cages hosting GF mice were kept in
flexible film isolators (North Kent Plastics, UK) venti-
lated via HEPA-filtered air. To exclude litter and cage ef-
fects, mice in each experimental feeding group
originated from different litters (three to six litters per
group) and were housed in at least three separate cages
(one to five mice per cage) (Additional file 1: Figure
S1a). Sterility of GF mice was routinely confirmed by
culturing and microscopic observation of feces after
Gram staining. In addition, 16S rRNA gene-targeted
PCR of GF cecal content was performed at the end of
the study.
A schematic view of the experimental feeding design is

shown in Additional file 1: Figure S1b. Briefly, mice were
fed a purified control diet (CD) (Table 1) at 8 weeks of
age. After 2 weeks of adaptation to this diet, they were
randomly divided into four feeding groups (n = 9–12
mice per colonization status per diet) (see all diet com-
positions in Table 1): (I) CD; (II) CD supplemented with
0.1% (w/w) cholic acid and 0.1% chenodeoxycholic acid
(both ≥ 97% purity; Sigma-Aldrich, Germany) (BA), (III)
palm oil-, or (IV) lard-based high-fat diet with 48 kJ%
from fat, both supplemented with bile acids as above (P-
and LHB, respectively). All diets were purchased from
Ssniff Spezialdiäten GmbH, γ-irradiated with 50 kGy,
stored at 4 °C after being freshly purchased prior to ex-
periment start, and fed ad libitum to both GF and SPF
mice for 8 weeks. At the end of this experimental feed-
ing period, mice were fasted for 6 h. Half of the mice
were sacrificed after measurement of fasting blood glu-
cose levels from the tail vein; the other half were used
for an oral glucose tolerance test (OGTT) and received
therefore 2 g glucose per kg body weight via gavage.
Blood glucose levels were measured from the tail vein at
0, 15, 30, 60, and 120 min after gavage and areas under
the curve (AUC) of blood glucose levels were calculated
for each animal.

Sampling
All mice were sacrificed with carbon dioxide. Systemic
EDTA blood was collected from the vena cava and cen-
trifuged (3000×g, 4 °C, 10 min). Plasma was aliquoted
and snap-frozen in liquid nitrogen. Organs were dis-
sected, their weight was recorded, and they were either
directly snap-frozen in liquid nitrogen or fixed in 4% for-
malin for 48 h. Epididymal, mesenterial, and inguinal
white adipose tissues (WAT) were collected and
weighed, and total WAT mass, i.e., the sum of all three
tissues referred to as “WAT mass” hereon, was calcu-
lated. Intestinal content or tissue from different gut
regions was collected into sterile tubes and immediately
snap-frozen in liquid nitrogen. Frozen samples were
stored at − 80 °C until analysis.

Serum insulin and leptin measurement
Systemic plasma insulin and leptin concentrations
were determined using a Luminex 100 IS system
(Luminex Corporation) with a Milliplex MAP mouse
serum adipokine panel kit (Merck Millipore), as de-
scribed previously [46].

Liver histopathology
Formalin-fixed paraffin-embedded liver samples were
cut into 5-μm-thick sections using a Leica rotary micro-
tome RM2255, mounted on SuperFrost® microscope
slides (Thermo Fisher Scientific) and dried overnight.
Sections were then heat-treated (15 min, 60 °C) to melt
paraffin and trichromatically stained with hematoxylin,
eosin, and saffron dyes with a multistainer station (Varis-
tain™, Thermo Fisher Scientific Inc., Germany). Once
covered with a glass cover slip, virtual slides were made
by using the Pannoramic Scan 150 (3DHISTECH
Ltd., Hungary) and examined in a blinded manner
using a semi-quantitative scoring system. Briefly, stea-
tosis (0–3 points), lobular inflammation (0–3), and
ballooning (0–2) of hepatocytes were evaluated. Points
were summed up to obtain a total fatty liver activity
score, which ranged from 0 (no pathology) to 8 (se-
vere disease) [47].

Immunohistochemical staining for glucagon-like peptide
1 and chromogranin A
Sections (5 μm) of paraffin-embedded tissue from the
proximal colon were used. At least three non-consecutive
sections were stained from each mouse. After deparaffini-
zation, antigen retrieval was performed by boiling in
citrate buffer. Glucagon-like peptide (GLP) 1 and chromo-
granin A (ChgA) antibodies (Santa Cruz Biotechnology)
were diluted 1:75 and applied overnight at 4 °C. The
secondary antibody (mouse anti-goat, dianova) was
diluted 1:300 and slides were incubated for 1 h at room
temperature. For development, 3,3′-diaminobenzidine
(DAB) or enhanced DAB (Sigma Aldrich) were
applied for ChgA and GLP-1 stainings, respectively.
Slides were subsequently counterstained with
hematoxylin and mounted with xylol-based mounting
medium (Roti®-Histokitt). GLP1-positive (GLP1+) and
ChgA-positive (ChgA+) cells were quantified using a
PreciPoint M8 microscope.

qPCR analysis of liver mRNA expression
Total RNA was extracted from liver samples using the
RNeasy Mini kit (Qiagen). RIN (RNA integrity number)
values were assessed with an Agilent 2100 Bioanalyzer



Table 1 Composition of diets used in the present study

Diet CD BA PHB LHB

Product number S5745-E902 S5745-E905 S5745-E915 S5745-E935

Energy [MJ/kg] 15.3 15.3 19.7 19.7

Fat [kJ%] 13 13 48 48

Protein [kJ%] 23 23 18 18

Carbohydrates [kJ%] 64 64 34 34

Casein [%] 24.0 24.0 24.0 24.0

Corn starch [%] 47.8 47.6 27.8 27.8

Maltodextrin [%] 5.6 5.6 5.6 5.6

Saccharose [%] 5.0 5.0 5.0 5.0

Cellulose[%] 5.0 5.0 5.0 5.0

L-Cystin [%] 0.2 0.2 0.2 0.2

Vitamins [%] 1.2 1.2 1.2 1.2

Minerals/trace elements [%] 6.0 6.0 6.0 6.0

Cholin-Cl [%] 0.2 0.2 0.2 0.2

Soy oil [%] 5.0 5.0 5.0 5.0

Palm oil [%] – – 20.0 –

Pork lard [%] – – – 20.0

Cholic acid [%] a – 0.1 0.1 0.1

Chenodeoxycholic acid [%] b – 0.1 0.1 0.1

Fatty acid composition [%]

C12:0 0.01 0.01 0.01 0.05

C14:0 0.02 0.02 0.21 0.29

C16:0 0.58 0.58 9.18 5.37

C18:0 0.18 0.18 1.11 2.88

C20:0 0.02 0.02 0.10 0.08

C16:1 0.01 0.01 0.05 0.60

C18:1 1.29 1.29 9.19 9.64

C18:2 2.65 2.65 4.67 4.55

C18:3 0.29 0.29 0.35 0.49

All diets were purchased from Ssniff Spezialdiäten GmbH; aSigma-Aldrich, cat. no. C1129; bSigma-Aldrich, cat. no. C9377; CD control diet, BA control diet supplemented
with 0.2% (w/w) primary bile acids, PHB palm oil-based HFD supplemented with bile acids, LHB lard-based HFD supplemented with primary bile acids,
C carbon
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using the RNA 6000 Nano Kit. Total RNA (10 μg) was
reverse transcribed using random primers and a
High-Capacity Complementary DNA Reverse Transcrip-
tion Kit (Applied Biosystems). Pre-amplification of cDNA
was then performed using the TaqMan® PreAmp Master
Mix (Applied Biosystems). The final cDNA samples were
stored at − 20 °C until RT-qPCR was performed using the
TaqMan® Gene Expression Technology (Applied Biosys-
tems). Probes were as follows: Mm00432403_m1 (Cd36),
Mm00440939_m1 (Ppar-α), Mm00440940_m1 (Ppar-γ),
Mm01304257_m1 (Acaca), and Mm02342723_m1
(Mlxipl). DNA was amplified using the StepOne Plus
Real-Time PCR system (Applied Biosystems). Data were
recorded by the manufacturer’s software and the RQ Man-
ager Analysis Software (Applied Biosystems) was used to
determine Ct values. GAPDH was identified as the least
variable housekeeping gene and was chosen to normalize
data in this study. Relative quantification of gene expres-
sion was calculated by means of ddCt values (2−[(Cttarget
gene

−Ct
GAPDH

)treated − (Ct
target gene

−Ct
GAPDH

)untreated]).
Hepatic triglyceride content
Portions of frozen liver were homogenized in
chloroform-methanol (2:1) to extract total lipids as pre-
viously described [48]. The organic extract was dried
and reconstituted in isopropanol. Triglycerides were
quantified using a serum triglyceride determination kit
(TR0100, Sigma-Aldrich, Germany) and expressed as
milligram per gram liver.
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Fatty acid analysis
Analysis of total fatty acids (FA) was performed as de-
scribed previously [49]. Briefly, fatty acid methyl esters
(FAMEs) were generated with acetyl chloride and
methanol overnight at room temperature and extracted
with hexane. Total FA analysis was carried out using a
Shimadzu 2010 GC-MS system (Shimadzu Deutschland
GmbH, Germany). FAMEs were separated using a
BPX70 column (10-m length, 0.10-mm diameter,
0.20-μm film thickness; SGE Analytical Science Europe
Ltd., UK) using helium as carrier gas. The initial oven
temperature was 50 °C, which was programmed to in-
crease with 40 °C per min to 155 °C, with 6 °C per min
to 210 °C, and with 15 °C per min to finally reach 250 °
C. FA species and their positional and cis/trans isomers
were characterized in scan mode and quantified by
single-ion monitoring mode detecting the specific frag-
ments of saturated and unsaturated FAs (saturated: m/z
74; monounsaturated: m/z 55; diunsaturated: m/z 67;
polyunsaturated: m/z 79). Non-naturally occurring
iso-C21:0 was used as an internal standard.

Glycerophospholipid and cholesterol analysis
Lipids were extracted according to a procedure de-
scribed by Bligh and Dyer in the presence of
non-naturally occurring lipid species as internal stan-
dards [50]. Lipids were quantified by electrospray
ionization tandem mass spectrometry (ESI-MS/MS) in
positive ion mode as described previously [51]. In brief,
samples were analyzed by direct flow injection using a
HTS PAL autosampler, an Agilent 1100 binary pump
(Germany), and triple quadrupole mass spectrometer
(Quattro Ultima, Micromass, Germany). A precursor ion
scan of m/z 184 specific for phosphocholine containing
lipids was used for phosphatidylcholine (PC), sphingo-
myelin (SM), and lysophosphatidylcholine (LPC) [52].
The following neutral losses were applied: phosphatidyl-
ethanolamine (PE) 141, phosphatidylserine (PS) 185,
phosphatidylglycerol (PG) 189, and phosphatidylinositol
(PI) 277 [53, 54]. PE-based plasmalogens (PEP) were an-
alyzed according to the principles described by
Zemski-Berry [55]. Sphingosine-based ceramides (Cer)
were analyzed using a fragment ion of m/z 264 [56]. Free
cholesterol (FC) and cholesteryl ester (CE) were quanti-
fied using a fragment ion of m/z 369 after selective de-
rivatization of FC using acetyl chloride [57]. Correction
of isotopic overlap of lipid species and data analysis by
Excel Macros was performed for all lipid classes. Quanti-
fication was performed by standard addition calibration
to cell homogenates using a number of naturally occur-
ring lipid species for each lipid class. Lipid species were
annotated according to the recently published proposal
for shorthand notation of lipid structures that are de-
rived from mass spectrometry [58]. Glycerophospholipid
species annotation was based on the assumption of
even-numbered carbon chains only.

Bile acid measurement
Bile acids were quantified in blood according to our
recently described method [38]. Briefly, 50 μl
EDTA-plasma was mixed with 125 μl methanol and
25 μl internal standard (IS) working solution (100 μM
d4-CA, 100 μM d4-GCDCA, and 1000 μM d7-Chol),
vortexed, and shaken continuously for 10 min. After
centrifugation (12,000×g, 4 °C, 10 min), 100 μl
supernatant were transferred into a new glass vial, evap-
orated to dryness under a gentle stream of nitrogen, and
redissolved in 50 μl methanol. The analysis of bile acids
and cholesterol was performed on an Agilent 1260 Infin-
ity Quaternary LC System (Agilent Technologies
Deutschland GmbH & Co. KG, Germany) coupled to a
triple quadrupole API 4000 QTRAP® MS (AB Sciex
Germany GmbH) equipped with a turbo ion spray
source, operating either in positive or negative ion mode.
A Kinetex® C18 reversed phase column equipped with a
Kinetex® C18 security guard column (Phenomenex Inc.,
Germany) was used for separation of the analytes
(constant flow rate of 200 μl/min).

Quantitation of short-chain fatty acids (SCFAs)
SCFA measurement was performed by LC-MS/MS after
3-nitrophenylhydrazine derivatization using a recently
reported method with some modifications [59]. Frozen
fecal samples (5–20 mg) were precisely weighed, sus-
pended in 1 ml of an internal standard solution contain-
ing propionic acid-d5, 13C2-acetate, and

13C4-butyrate in
acetonitrile/water (1 + 1, v/v, 1 ml), and homogenized by
vortexing after addition of glass beads (10 beads, diam-
eter 2 mm). After equilibration (30 min) on an orbital
shaker, samples were centrifuged (12,000 rpm, 4 °C), and
supernatants (40 μl) were placed into autosampler vials,
mixed with 20 μl of 3-nitrophenylhydrazine hydrochlor-
ide (200 mmol/l) in acetonitrile/water (1/1, v/v) and
20 μl of N-(3-dimethylaminopropyl)-N′-ethylcarbodii-
mide hydrochloride (120 mmol/L) in acetonitrile/water
(1/1, v/v) containing 6% pyridine. After 30 min at 40 °C,
samples were diluted with acetonitrile/water (1/9, v/v;
200 μl) and aliquots (1 μl) were used for UHPLC-MS/
MS analysis.
A Nexera X2 UHPLC system (Shimadzu, Duisburg,

Germany), consisting of two LC pumps LC30AD, a
DGU-20 degasser, a SIL-30AC autosampler, a CTO-30A
column oven, and a CBM-20A system controller, was
hyphenated with a QTRAP 6500 LC-MS/MS system
(Sciex, Darmstadt, Germany). Chromatographic separ-
ation was performed on a Kinetex C18 column (100 ×
2.1 mm, 1.7 μm, 100 Ǻ, Phenomenex, Aschaffenburg,
Germany) using water/formic acid (100/0.1, v/v) as solvent
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A and acetonitrile/formic acid (100/0.1, v/v) as solvent B
at a flow rate of 0.35 ml/min and a column temperature of
40 °C. Starting with initial conditions of 17% B for 2 min,
the content of B in the mobile phase was increased to 60%
within 9 min, followed by an immediate switch to 100% B
(held for 1 min), and re-equilibration at starting conditions
for 3 min.
The mass spectrometer was operated in the negative

electrospray ionization and low mass mode, and the ion
spray voltage was set at − 4500 V. Nitrogen served as
nebulizer gas (55 psi), turbo gas (500 °C) for solvent dry-
ing (65 psi), curtain gas (35 psi), and collision gas (1.9 ×
10− 5 Torr). The MS/MS parameters, declustering poten-
tial, entrance potential, collision cell entrance potential,
collision energy, and cell exit potential were tuned for
each individual compound after derivatization by flow
injection (10 μl/min), detecting the fragmentation of the
[M-H]-molecular ions into specific product ions after
collision with nitrogen (4.5 × 10− 5 Torr). Mass spectro-
metric data were analyzed using Analyst software 1.6.2
(Sciex). Target analytes were detected based on sched-
uled MRM mode using the following mass transitions:
3-NPH-acetate (m/z 193.9→ 136.8), 3-NPH-propanoate
(m/z 207.9→ 136.8), 3-NPH-butyrate (m/z 221.9→
136.9), 3-NPH-isobutyrate (m/z 222.0→ 136.9), 3-NPH-
valerate (m/z 236.0→ 136.8), 3-NPH-isovalerate (m/z
236.0→ 137.0), 3-NPH-2-methylbutyrate (m/z 236.0→
136.8), 3-NPH-hexanoate (m/z 250.0→ 136.7), and
3-NPH-4-methylvalerate (m/z 250.0→ 136.9). While
acetate and propanoate were quantified using their iso-
topologues 3-NPH-13C2-acetate (m/z 196.0→ 136.9) and
3-NPH-d5-propionate (m/z 213.0→ 136.9), the
remaining SCFAs were determined using 3-NPH-13C4-
butyrate (m/z 226.0→ 137.0) as internal standard. After
UHPLC-MS/MS analysis, calibration curves (0.0001–
1.6 mg/l; eight-point calibration) were prepared by plot-
ting peak area ratios of analyte to internal standard
against concentration ratios of each analyte to the in-
ternal standard using linear regression (R2 > 0.997). For
each sample, data were calculated as the means of tripli-
cate analysis.

Bacterial cultivation
For determination of viable bacterial cell counts, sample
processing and incubation were carried out under anaer-
obic conditions (N2/H2, 90:10) in a Whitley H85 work-
station. Materials were brought into the workstation at
least 24 h prior to experiments. Fresh cecal content was
weighed and diluted 1:10 with filter-sterilized phosphate
-buffered saline (PBS) containing 0.02% (w/v) peptone
and 0.05% L-cystein. After preparation of serial 1:10-di-
lution series (one per sample), 10 μl of each dilution
were plated onto Wilkins-Chalgren-Anaerobe (WCA)
agar (Oxoid) supplemented with filter-sterilized 0.02%
dithiothreitol (DTT) and 0.05% L-cystein. Plates were in-
cubated at 37 °C for 1 week (SPF mice) or 2 weeks (GF
mice). Colony-forming units (CFUs) were enumerated
and expressed per gram of cecal content (wet weight).

DNA isolation
Metagenomic DNA was obtained from cecal content of
fasted SPF mice after mechanical lysis followed by purifi-
cation according to a published protocol [60] modified
as follows: cecal content in 600 μl stool DNA stabilizer
(Stratec Biomedical AG) was transferred into a 2-ml
screw-cap tube containing 500 mg zirconia/silica beads
(0.1 mm; BioSpec Products), 250 μl 4 M Guanidinethio-
cyanate (Sigma-Aldrich, Germany), and 500 μl 5%
N-lauroylsarcosine (Sigma-Aldrich, Germany). Samples
were mixed and incubated for 60 min at 70 °C with con-
stant shaking, and bacterial cells were disrupted by
mechanical lysis using a FastPrep®-24 (three times, 40 s,
6.5 m/sec) (MP Biomedicals) fitted with a cooling
adaptor. After addition of 15 mg polyvinylpolypyrroli-
done (PVPP, Sigma-Aldrich, Germany), the suspension
was vortexed and centrifuged (3 min, 15,000×g, 4 °C).
The supernatant (500 μl) was transferred into a new
Eppendorf tube, mixed with 5 μl RNase (VWR Inter-
national, stock concentration 10 mg/ml) and incubated
for 20 min at 37 °C with constant shaking. Genomic
DNA was purified using NucleoSpin® gDNA columns
(Macherey Nagel GmbH & Co. KG, Germany) following
the manufacturer’s instructions. DNA quantity and qual-
ity were measured with a NanoDrop® instrument
(Thermo Fisher Scientific Inc., Germany).

16S rRNA gene-targeted PCR
To test the sterility of GF mice, 16S rRNA genes were
amplified using primer 27F (5′-agagtttgatcctggctcag) and
1492R (5′-ggttaccttgttacgactt) [61]. For each sample, the
PCR mixture contained 25 ng DNA, 20 μl 2× DreamTaq
green PCR mastermix (Thermo Fisher Scientific Inc.,
Germany), and 1 μl of each primer stock solution
(20 μM). PCR conditions were 3 min at 95 °C followed
by 25 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for
90 s, and a final extension at 72 °C for 5 min. PCR prod-
ucts were separated by electrophoresis in 1% agarose
gels and visualized using the GeneFlash system (Syngene
International Ltd.).

High-throughput 16S rRNA gene amplicon analysis
Libraries were constructed in a semi-automated manner
using a Biomek-4000 pipetting robot (Beckmann Coulter
Biomedical GmbH). The V3/V4 region of 16S rRNA
genes was amplified (25 cycles) from 24 ng of metage-
nomic DNA using primer 341F and 785R in a two-step
procedure to limit amplification bias [62, 63]. Libraries
were double-barcoded (8-nt index on each of the
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forward and reverse 2nd-step primer) [64, 65]. Ampli-
cons were purified using the AMPure XP system (Beck-
mann Coulter Biomedical GmbH), pooled in an
equimolar amount with addition of 25% (v/v) PhiX li-
brary, and sequenced in paired-end modus (PE275)
using a MiSeq system (Illumina).
Data were analyzed as described in detail previously

[66]. Raw sequence reads were processed using IMNGS
(www.imngs.org) [67], an in-house-developed pipeline
based on UPARSE [68]. Parameters were as follows: bar-
code mismatches, 2; expected error, 3; Phred quality
threshold, ≥ 3; trimming score, 3; trimming length,
10 nt; min. sequence length, 300 nt; max. sequence
length, 600 nt (see IMNGS website for further informa-
tion). Operational taxonomic units (OTUs) were clus-
tered at 97% sequence similarity and only those
occurring at a relative abundance ≥ 0.25% total reads in
at least one sample were further analyzed. For each
OTU, the final taxonomy was assigned using the most
detailed classification among SILVA [69] and RDP [70].

Metatranscriptomics
Total RNA was extracted from frozen cecal contents as
follows: approx. 50 mg content was mixed with 300 μl
RLT buffer supplemented with B-mercaptoethanol
(10 μl/ml, Sigma-Aldrich, cat. no. M3148) and 1 ml Tri-
zol (Invitrogen, cat. no. 15596-18) and vortexed for 15 s.
RNase- and DNase-free glass beads (600 mg,
Sigma-Aldrich, cat. no. G4649-100G) were added prior
to cell disruption using a FastPrep®-24 (40 s then 20 s at
6.5 m/sec) (MP Biomedicals). After 5 min at room
temperature and centrifugation (1 min, 12,000×g, 4 °C),
supernatants were transferred into a tube containing
300 μl chloroform (VWR, cat. no. 22711290), vortexed,
incubated 3 min at room temperature, and centrifuged
(15 min, 12,000×g, 4 °C). The aqueous phase was care-
fully collected and transferred into a new tube contain-
ing 1 ml of freshly prepared 70% ethanol solution. Tubes
were inverted five times and the mixture was loaded
onto a RNeasy spin column (RNeasy mini kit, Qiagen,
cat. no. 74104). RNA extraction was completed as de-
scribed by the manufacturer including on-column DNA
digestion using the RNase-free DNAse set (Qiagen, cat.
no. 79254). Total RNA was depleted from rRNA using
the Ribo-Zero™ Bacteria Kit (Illumina, cat. no.
MRZB12424) as recommended by the manufacturer.
rRNA-depleted RNA was purified using the RNeasy
MinElute CleanUp Kit (Qiagen, cat.no. 74204). cDNA
synthesis and library preparation were performed using
the ScriptSeq™v2 RNA-Seq Library Preparation Kit (epi-
center, cat. no. SSV21106/SSV21124). cDNA was puri-
fied using the MinElute PCR Purification Kit (Qiagen,
cat. no. 28004). Libraries were multiplexed and se-
quenced on a HiSeq2500 sequencer (Illumina) with
Rapid v2 chemistry and the 2×150 bp paired-end read
module. Raw reads were checked for quality scores
(Q ≥ 25) and length (L ≥ 100 bp) using sickle (https://
github.com/najoshi/sickle). Residual ribosomal reads
were removed using SortMeRNA [71]. mRNA reads
were mapped onto an in-house-implemented mouse
metagenome catalog based on Xiao et al. [72] and
containing 4.5 million genes using bwa [73]. Mapping
results of the metatranscriptomic dataset were ana-
lyzed using DESeq2 [74].

Statistics
Unless otherwise stated, data are presented as mean ±
SD. Statistics were performed in R or using Prism ver-
sion 7.00 (GraphPad). The latter software was also used
for generating graphs. The following statistical tests were
used: (I) Effects of feeding and colonization groups were
compared using two-way ANOVA followed by pairwise
testing (Holm-Sidak; *p < 0.05; **p < 0.01; ***p < 0.001),
(II) Effects of diets within one colonization group or of
colonization status for a given diet were compared using
one-way ANOVA followed by pairwise testing (Holm-Si-
dak; #p < 0.05; ##p < 0.01; ###p < 0.001). Regression ana-
lysis was performed by ANCOVA in Microsoft Office
Excel 2016 with pairwise comparison. Statistical analysis
of microbiota data was performed in Rhea [75]. EzTaxon
[76] was used for the identification of OTUs showing
significant differences (p < 0.05) in relative abundances
between feeding groups.
Results
Metabolic state depends on dietary fat source and the
presence of intestinal microbes
We first characterized the metabolic status of mice fol-
lowing dietary bile acid supplementation with or without
addition of fat (derived from plant or animal) in the
presence (SPF) or absence (GF) of gut commensals.
SPF mice were significantly heavier than age-matched

GF mice in all diet groups at the end of the feeding
period (18 weeks of age) (Fig. 1a). Bile acid supplementa-
tion did not influence body weight, whereas both HFDs
increased body weight when combined with BA for
8 weeks. This HFD-induced body weight gain was
observed only in SPF, not in GF mice (Fig. 1a and
Additional file 2: Figure S2a). Interestingly, SPF mice fed
lard (LHB) were characterized by a higher increase in
WAT mass compared to palm oil (PHB) (3.2 ± 0.9 vs.
2.0 ± 1.3 g; p = 0.0014) (Fig. 1b). This observation was
confirmed by regression and ANCOVA analyses (Fig. 1c).
To assess metabolic consequences of this difference in
fat mass, we performed an OGTT that revealed a signifi-
cant effect of dietary fat: lard-fed SPF mice were charac-
terized by impaired glucose tolerance when compared to

https://www.imngs.org
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
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Fig. 1 Impact of experimental feedings and microbial colonization on mouse metabolism. a Final body weight (at the age of 18 weeks after
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the palm oil group (Fig. 1d). Similar to body weight gain,
glucose tolerance was not affected by the different diets
in GF mice. Regression and ANCOVA analyses of fasting
blood insulin and leptin levels indicated lower concen-
trations of insulin in LHB- vs. PHB-fed SPF mice (p =
0.0009) (Additional file 2: Figure S2b). There was no dif-
ference for leptin (p = 0.523).
Gut-derived incretin hormones produced by enteroen-
docrine cells (EEC) influence glucose tolerance and insu-
lin secretion. Because GLP-1 is produced by a subset of
enteroendocrine cells (EEC) located in the epithelium of
the lower gastrointestinal tract, we quantified numbers
of cells positive for GLP-1 and the EEC-marker chromo-
granin A (ChgA) in colonic sections from the different
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feeding groups. Palm oil feeding combined with bile
acids was associated with an increase in both
GLP1-positive cells (Fig. 1e) and total EEC numbers
(Additional file 2: Figure S2c), whereas lard showed no
alterations compared to the CD and BA groups.
Altogether, the data aforementioned indicate that lard

in the diet had a detrimental impact on host metabolism
when combined with bile acids, but only in the presence
of endogenous gut microbes.
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induced fatty liver activity scores were higher in SPF vs.
GF mice, which was significant only for the lard diet
(Additional file 3: Figure S3b). This was due to more se-
vere steatosis but not to inflammation and ballooning
(data not shown). In line with the changes observed in
body weight between GF and SPF mice, the colonization
status of mice influenced hepatic triglyceride concentra-
tions, which were higher in SPF vs. GF mice fed the CD,
PHB, and LHB diets, yet significance was reached only
for the lard-fed group (Fig. 2b).
To pinpoint specific changes associated with the

lard-induced metabolic effects described in Fig. 1, we de-
termined hepatic lipid profiles in GF and SPF mice fed the
PHB vs. LHB diets. Total amounts of fatty acids were 3.3-
(PHB) and 1.7-fold (LHB) higher in the liver of SPF vs. GF
mice, without significant changes between the two HFDs
(Fig. 2c). With respect to fatty acid composition, the amp-
litude of colonization-induced changes (SPF vs. GF) was
higher in the lard-fed group. SPF LHB mice showed sig-
nificantly higher proportions of monounsaturated fatty
acids (MUFA), in particular oleic acid (FA 18:1 n-9), and
lower proportions of poly-unsaturated fatty acids (PUFA),
in particular arachidonic acid (FA 20:4 n-6) (Fig. 2c). Since
the major fraction of hepatic fatty acids are esterified to
cell membrane lipids and sterols, we next analyzed glycer-
ophospholipid, sphingolipid, and cholesteryl ester (CE)
species. Principal component analysis (PCA) highlighted
colonization- and diet-specific profiles (Fig. 2d). Dietary
Table 2 Bile acid and cholesterol concentrations in systemic plasma

Colonization status GF

Diet PHB

T-α-MCA [nM] 107 ± 60

T-β-MCA [nM] 358 ± 125a

TCA [nM] 186 ± 116

TCDCA [nM] 23 ± 28

TDCA [nM] BQ

β-MCA [nM] 29 ± 26

12-DHCA [nM] BQ

CA [nM] 3.8 ± 6.5

TLCA [nM] BQ

DCA [nM] BQ

SUM of all bile acids [nM] 706 ± 348

Primary [nM] 706 ± 348

Secondary [nM] BQ

Tauro-conjugated [nM] 673 ± 326

Unconjugated [nM] 33 ± 28

Cholesterol [μM] 628 ± 241

Data are mean ± SD. Diets are as in Table 1. Italicized data indicate differences betw
two-way ANOVA with Holm-Sidak for multiple comparison; t test for LHB vs. PHB comp
LHB among SPF mice; cGF vs. SPF for PHB diet; dGF vs. SPF for LHB diet. CA cholic acid
LCA lithocholic acid, MCAmuricholic acid, T tauro-conjugated, BQ below quantification
fat source significantly affected total phosphatidylcholine
(PC) and CE levels in SPF mice. Total CE fractions were
1.8-fold higher in LHB mice (including higher proportions
of CE 16:1 and CE 18:1), while PC proportions were de-
creased, with higher representation of PC 36:2 vs. 36:4.
As we observed significant changes in hepatic lipid

profiles between animals fed the two HFDs, we quanti-
fied the expression of genes involved in lipid transport
and metabolism in liver samples. The expression of
Cd36, encoding a scavenger receptor involved in
long-chain fatty acid transport, was decreased approx.
ten- and twofold in SPF mice fed the PHB and LHB, re-
spectively, when compared to corresponding GF mice,
without statistically significant difference between the
two HFDs (Fig. 2e). There was also no significant
colonization- or diet-induced differences in expression
of the other genes measured (Ppar-α, Ppar-γ, Acaca,
Mlxipl). Lipid analysis also included the quantification of
cholesterol and bile acids in the blood (Table 2) [38].
The sole fat source-dependent difference in SPF mice
was significantly increased systemic concentrations of
tauro-chenodeoxycholic acid (TCDCA) in lard- vs. palm
oil-fed animals (21.5 ± 12.6 nM vs. 7.1 ± 8.4 nM, p =
0.0415, t test). Cholesterol levels were neither affected
by the colonization status nor by the diet.
In summary, alterations of the mouse metabolic status

associated with dietary lard in combination with bile acids
were accompanied by significant changes in lipid profiles.
of fasted mice

SPF

LHB PHB LHB

163 ± 128 31 ± 11 53 ± 31

780 ± 617 36 ± 10c 34 ± 17d

236 ± 173 39 ± 54 35 ± 23d

43 ± 51 7.1 ± 8.4 22 ± 13b

BQ 53 ± 19 83 ± 32

134 ± 225 31 ± 40 21 ± 37

BQ 2.2 ± 4.0 1.6 ± 3.8

7.6 ± 10.8 45 ± 39 37 ± 25

BQ BQ BQ

BQ 103 ± 32 142 ± 55

1363 ± 1179 347 ± 95 429 ± 151d

1363 ± 1179 189 ± 87 202 ± 103d

BQ 159 ± 48 227 ± 85

1221 ± 963 166 ± 59 228 ± 61d

142 ± 220 181 ± 83 201 ± 104

539 ± 234 775 ± 242 790 ± 235

een groups. Superscript letters indicate statistical significance (p < 0.05, n = 4–6;
arisons within colonization groups) as follows: aP- vs. LHB among GF mice; bP- vs.
, CDCA chenodeoxycholic acid, DCA deoxycholic acid, DHCA dihydroxycholic acid,
limit [38]
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The observation that diet effects were absent in GF mice
implied that microbial colonization is at least partly re-
sponsible for the changes observed, which prompted us to
analyze gut microbiota structure and functions.

Dietary fat and bile acid supplementation modulates the
mouse cecal microbiota
Microbiota structure
One known major difference between GF and SPF mice
is reduced cecum weight under SPF conditions, which
was also observed in the present study (Additional file 4:
Figure S4A). In contrast, the effect of bile acid supple-
mentation on cecum weight had not been investigated
so far. BA feeding significantly reduced cecum weight in
both GF and SPF mice, and this decrease was accentu-
ated by HFDs. Anaerobic cultivation of cecal contents
confirmed the germ-free status of GF mice
(Additional file 4: Figure S4B), which was also supported
by negative 16S rRNA gene-targeted PCRs
(Additional file 4: Figure S4C). Cultivation also showed
that the different diets did not significantly alter viable bac-
terial counts in SPF mice (Additional file 4: Figure S4B).
High-throughput sequencing of 16S rRNA gene ampli-

con libraries was performed to obtain first insights into
diet-induced shifts in gut bacterial profiles. We analyzed
samples from fasted SPF mice only (n = 6–7) to exclude
confounding effects of oral glucose in the group sub-
jected to OGTT. A total of 475,710 quality- and
chimera-checked sequences (19,028 ± 2768 per sample)
representing a total of 153 operational taxonomic units
(OTUs) (125 ± 6 per sample) were obtained and further
analyzed (Additional file 5: Table S1).
LHB feeding was associated with increased richness

(ca. 10 molecular species) when compared to both BA and
CD, but not significantly to PHB (Fig. 3a). BA did not
affect richness, yet Shannon effective counts were de-
creased significantly, which suggests shifts in the evenness
of dominant species distribution. Beta-diversity analysis
revealed a significant clustering of samples according to
diet (Fig. 3b). In particular, all experimental diets increased
inter-individual differences in the phylogenetic makeup of
cecal microbiota (i.e., within group heterogeneity) when
compared to the control diet, suggesting less stable states
of the ecosystem. Diet-induced shifts in microbiota com-
position were clearly visible at the family level: all dietary
interventions (BA, PHB, and LHB) were associated with
increased proportions of Desulfovibrionaceae, whereas
Erysipelotrichaceae were not detected in these mice
(Fig. 3c). The relative abundance of Lachnospiraceae was
discriminative between the palm- and lard-based interven-
tion (ca. 15% decrease in the latter group) and that of
Ruminococcaceae was higher in LHB vs. CD. Both PHB
and LHB showed lower relative abundances of
Rikenellaceae.
A deeper look at the level of single molecular species
showed that the four dietary interventions were character-
ized by the presence of specific OTUs (Fig. 3d). Within the
family Erysipelotrichaceae, Faecalibaculum rodentium was
specific to the control diet, while BA-fed mice exhibited
higher proportions of OTUs most closely related to Alistipes
and Muribaculum species. Significant differences were also
observed between the two HFDs: palm oil feeding increased
the relative abundance of one OTU with closest match to
Acetatifactor muris, whereas Oscillibacter ruminantium was
not detectable in this group. Mice fed the lard-based diet
were characterized by increased relative abundances of
Clostridium lactatifermentans and Flintibacter butyricus.
Taken together, bile acids and dietary fat source af-

fected cecal microbiota structure. Hence, we further in-
vestigated microbial functions. Measurement of
short-chain fatty acid (SCFA) in colonic content of SPF
mice indicated higher concentrations of acetate in PHB
mice, but results did not reach significance and the co-
lonic concentrations of all other SCFA were also not af-
fected (Additional file 6: Figure S5). In order to obtain a
comprehensive view of microbial functions, cecal con-
tents were further analyzed using metatranscriptomics.

Microbiota functions
Cecal content from 22 fasted mice (CD, n = 7; BA, n = 4;
PHB, n = 7; LHB, n = 5) were analyzed using microbial
metatranscriptomics. On average, 14,906,345 ± 2,029,931
high-quality mRNA reads were obtained per mice and
2,424,413 ± 741,203 were mapped onto 180,412 ± 34,440
genes from the mouse metagenome catalog. Overall, the
dietary interventions had a substantial impact on microbial
activities: major clusters of mice according to microbial
gene expression in the cecum were discriminated by HFD
intake (Fig. 4a). Looking more specifically at differences be-
tween the two HFDs according to the metabolic pheno-
types observed in mice, 266 genes were characterized by
different levels of expression between LHB and PHB
(Fig. 4b). Genes classified in the categories ether lipid me-
tabolism (map00565), autophagy (map04138), and galactose
metabolism (map00052) were overexpressed in mice fed
palm oil compared with those fed lard (Fig. 4b). At the level
of single KEGG Orthologies (KO) within the ether lipid
metabolism pathway, two KOs were more prevalent in
palm oil-fed mice: sucrose phosphorylase [K01058] and glo-
boside alpha-N-acetylgalactosaminyltransferase (GBGT1)
[K01114]. Among the top five differentially expressed
genes, transcripts encoding enzymes linked to hyaluronic
acid metabolism such as hyaluronate lyase [K01727] and
hyaluronoglucosaminidase [K01197] were also more
expressed (eight- and sevenfold, respectively) in palm
oil-fed mice (Additional file 7: Table S2). On the other
hand, 15 functional categories had a significantly higher ex-
pression in mice fed lard, including fatty acid biosynthesis
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Fig. 3 Diet-induced alteration of cecal microbiota profiles. a Alpha-diversity shown as richness and Shannon effective counts. b Beta-diversity
analysis via multidimensional scaling analysis of generalized UniFrac distances. The p value was obtained by PERMANOVA for testing the
significance of separation between sample groups. c Boxplots of significantly altered taxonomic groups at the family level. Erysipelotrichaceae
were detected in four of six CD-fed mice. d Relative abundances of dietary group-specific OTUs shown as a heat map. OTU sequences (ca.
450 bp of the V3/V4 region) were classified using EzTaxon. The range of relative abundances of each OTU is given in square brackets next to the
corresponding OTU identification number. Statistics were performed and original graphs were generated in the R programming environment
using Rhea [67]: *p < 0.05; **p < 0.01; ***p < 0.001. Number of mice: CD, 6; BA, 6; PHB, 7; LHB, 6
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(map00061), amino acid metabolism (alanine, aspartate,
and glutamate metabolism, map00250; arginine biosyn-
thesis, map00220; D-alanine metabolism, map00473;
arginine and proline metabolism, map00330; lysine
biosynthesis, map00300; taurine and hypotaurine metabol-
ism, map00430; beta-alanine metabolism map00410), and
sulfur metabolism (map00920) (Fig. 4c). In terms of
KEGG Orthologies, glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) transcripts [K00134] were most highly
regulated in lard-fed mice (ca. 4.5-fold overexpression)
(Additional file 7: Table S2).

Discussion
The major goal of the present study was to determine
the functional implication of gut microbial populations
for metabolic responses to bile acids and fat source in
the diet of mice. Whereas germ-free mice appeared to
be protected, colonized mice showed signs of metabolic
disturbances when fat was provided as lard in a diet con-
taining primary bile acids, which was accompanied by
specific gut microbiota signatures.

Gut microbial colonization and host metabolism
The fact that the body weight of germ-free mice was
lower than that of colonized counterparts in our experi-
ments is consistent with the literature [77]. We also
demonstrate that the presence of gut microbes modu-
lates hepatic lipid profiles: colonization was generally
linked to elevated amounts of triglycerides and total fatty
acids in the liver. Higher ratios of mono- to
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Fig. 4 Diet-induced shifts in the metatranscriptome of mouse cecal microbiota. a Heat map of the 1207 genes with differential expression levels
between the four diets. Genes were selected according to adjusted p values ≤ 0.001 and absolute(log2FC)≥ 5. Mice were grouped into two main
clusters corresponding to the BA/CD diets or the HFDs supplemented with BA. b Heat map depicting the expression of 266 genes
showing differential expression level between the lard- and palm oil-based HFD. Genes were selected according to adjusted p values
≤ 0.001 and absolute(log2FC) ≥ 2.5. c Main metabolic pathways with significantly different expression level between the two HFDs

Just et al. Microbiome  (2018) 6:134 Page 13 of 18
polyunsaturated fatty acids in colonized vs. germ-free
animals suggest an increased fatty acid synthesis. It has
been known for a while that the gut microbiota influ-
ences host lipid metabolism [77], but the interplay be-
tween gut microbes and dietary fat source has been
highlighted more recently [9]. Our study confirms that
the impact of diets containing fat of either animal or
plant origin is dependent on intestinal microbial
colonization. As reported by others [32], germ-free mice
were characterized by high amounts of
tauro-β-muricholic acid (TCDCA) even when feeding
primary bile acids as in our study.

Shifts in host metabolism and gut microbiota structure
due to primary bile acid supplementation
Recently, Zheng et al. [78] reported that supplementa-
tion of bile acids alone in diet triggered metabolic distur-
bances similar to a HFD based on coconut oil (increased
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body weight, adipose tissue, hypercholesterolemia). Nei-
ther we nor Watanebe et al. [27] observed such an effect
of bile acids. Methodological differences between the
studies may explain this discrepancy, including the type
and dose of bile acids supplemented to diets (e.g., 0.1%
conjugated cholic acid in Zheng et al. vs. 0.2% free pri-
mary bile acids in our study), the genetic background of
mice, or their age at feeding start (male C57BL/6J at
3 weeks of age vs. male C57BL/6N at 10 weeks of age).
Moreover, Zheng et al. [78] reported mean relative abun-
dances of 30 to 40% Proteobacteria in the cecum of mice
on control diet (including members of the following
various taxa: class Campylobacterales; family Helicobac-
teraceae; genus Desulfovibrio), which is rather unusual
for laboratory mice and may also explain the different
phenotypes observed [79, 80].
Only few studies have assessed gut microbiota changes

induced by bile acids and findings seem to be
study-dependent, most likely due to different experimen-
tal protocols and varying colonization status of mice at
baseline. Islam et al. [40] investigated the impact of feed-
ing approx. 0.2% cholic acid on the cecal microbiota of
rats based on microscopic counts, clone libraries, and in
situ hybridization. They reported decreased cell counts
and Shannon diversity index whereas proportions of
Lachnospiraceae and Erysipelotrichaceae were increased.
In our study, primary bile acids alone reduced Shannon
effective counts, but Erysipelotrichaceae were not de-
tected at all in mice fed bile acids. Moreover, relative
abundances of Lachnospiraceae were lower, except in
the group fed palm oil. In another study, feeding 1%
cholic acid to mice increased the density of bacterial
populations capable of producing the secondary bile acid
deoxycholic acid by 7-α-dehydroxylation, as determined
in vitro using radioactively labelled substrate [81]. Via
16S rRNA amplicon sequencing, we did not find signifi-
cant increase in the occurrence of known secondary bile
acid-producing bacterial species, even though some of
the yet uncultured species detected (e.g., dominant
members of family S24-7) may be able to do so. Relative
abundances of the family Desulfovibrionaceae (within
the class Deltaproteobacteria) were increased in
response to bile acid supplementation. In line with this
finding, others found that relative abundances of Desul-
fovibrionaceae, which are Gram-negative sulphate-
reducing bacteria, significantly increased in obese and
metabolically impaired mice [82, 83].

Impact of dietary fat sources on host metabolism
Published data showed that germ-free mice are per se
not resistant to diet-induced obesity, i.e., their propensity
to gain weight depends on the type of high-calorie diet
used [8]. Kübeck et al. [9] recently reported that
germ-free mice fed a lard-based HFD were resistant to
diet-induced obesity partly due to increased energy ex-
penditure, in contrast to mice fed a palm oil-based HFD.
Interestingly, germ-free mice fed HFDs did not gain
weight significantly in our experiments, neither based on
lard nor palm oil and despite a feeding period similar to
Kübeck et al. (8 weeks). This suggests that the addition
of primary bile acids in the same HFD as in Kübeck
et al. was sufficient to prevent obesity development in
germ-free mice fed palm oil. This is in agreement with
findings from 2006 by Watanabe et al. [27], who
reported that a 7-week-long feeding of 0.5% (w/w) cholic
acid to conventional C57BL/6J mice induced energy
expenditure, which counteracted body weight gain in-
duced by a high-fat diet. Even though information on fat
source was not provided in this paper, colonized mice
fed both a HFD and bile acids were as lean as control
mice on a chow diet. In our experiments, however, this
phenomenon was observed only in germ-free mice,
which stayed lean, whereas conventional mice fed both
bile acids and HFDs gained weight significantly when
compared with mice on the control or BA diet. Add-
itional experiments will be required to clarify whether
the fat source in HFDs determines the possible
anti-obesity effects of primary bile acids.
The gut-derived incretin hormones glucagon-like pep-

tide 1 (GLP1) and glucose-dependent insulinotropic
polypetide (GIP) are important factors determining glu-
cose tolerance and insulin secretion from the pancreas.
GIP and GLP1 show distinct expression patterns along
the intestinal tract, GIP being produced in the proximal
small intestine and GLP1 in distal parts of the small in-
testine and in the colon [84]. A subset of enteroendo-
crine cells (EEC), so-called L-cells, secretes GLP1 and
their density was shown to be increased by dietary lipids
both in mice and humans [85]. In the present study,
quantifying the number of cells positive for GLP1 and
the pan-EEC-marker chromogranin A in mouse colonic
sections revealed that palm-based HFD feeding was as-
sociated with a significant increase in GLP1-producing
EEC compared with all other diets, including lard-based
HFD. Unchanged EEC numbers in the colon of LHB
mice is in line with published data by Beyaz et al. [86]
reporting no alteration in ChgA-positive cells in the je-
junum of mice fed a 60%-kcal high-fat diet based on
lard. Our results suggest that various dietary fat sources
have different abilities to promote L-cell differentiation,
the increased number of GLP1-producing EEC in the
colon of PHB-fed mice possibly contributing to the im-
proved glucose tolerance observed in these mice.
To the best of our knowledge, there is only one study

that previously analyzed lipid profiles in the liver of GF
and SPF mice fed different diets: Caesar et al. [87] investi-
gated the impact of a lard-based or fish oil-based HFD fed
to adult C57BL/6 mice for 11 weeks. The authors reported
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a dominant impact of diet compared with colonization sta-
tus, which was not the case in our study, likely because bile
acids were fed to mice in addition to HFDs. Nonetheless,
the data by Caesar et al. support our finding that triglycer-
ides and cholesteryl esters are elevated in the liver of mice
fed lard. Decreased proportions of phosphatidylcholine in
lard-fed mice characterized by detrimental metabolic re-
sponses are also in agreement with the literature [88].

Impact of dietary fat sources on the gut microbiota
Amplicon sequencing of 16S rRNA genes from the cecal
content of fasted SPF mice revealed diet-induced
changes in gut microbiota diversity and composition.
When comparing the two HFDs, PHB was linked to
increased relative abundances of Lachnospiraceae, in-
cluding one specific OTU with 92.6% similarity to Aceta-
tifactor muris, a bacterium originally isolated from the
cecum of an obese mouse [89]. This species is the clos-
est relative to our OTU, yet at a sequence identity below
genus-level thresholds. Other studies reported changes
in the occurrence of A. muris relatives in the context of
diet-induced obesity [9, 10, 67, 82]. The diversity and
role of these bacteria in host metabolism will warrant
further investigations. Two OTUs characterized by
higher relative abundances following LHB feeding were
identified at the species level as Clostridium lactatifer-
mentans and Flintibacter butyricus. The former species
is a lactate-fermenting bacterium producing the short-
chain fatty acids acetate and propionate with traces of
butyrate and isovalerate [90]. The latter species is cap-
able of producing butyrate from amino acids [91], the
metabolism of which seems to be affected by HFD as
found in the present work by metatranscriptomics and
in one of our previous study [92]. Nonetheless, no differ-
ences in colonic SCFA levels were observed in colonic
content of the mice. The HFDs affected mouse cecal
microbiota also at the functional level, as the metatran-
scriptomic approach identified genes and pathways af-
fected by fat source. The expression of genes involved in
ether lipid metabolism was similar between control and
lard-fed mice but was significantly higher under palm oil
feeding. Changes in ether lipid levels have been associ-
ated with host metabolic conditions, including nonalco-
holic steatohepatitis, hypertension, obesity, and type-1
diabetes [93]. On the other hand, GAPDH transcript
levels were higher in LHB vs. PHB mice; this gene and
its activity were linked to obesity in rat models [94, 95].
Although speculative, these observations may partly ex-
plain the differential metabolic phenotypes observed in
colonized mice fed palm oil vs. lard.

Conclusions
We found that dietary fat source is an important factor
that can substantially impact phenotypes in mouse
models of diet-induced obesity. Lard in combination
with primary bile acids in the diet had detrimental ef-
fects on the host metabolic state in colonized mice. The
finding that germ-free mice were protected demon-
strates the involvement of the gut microbiota, which was
differentially affected at both the structural and func-
tional level by the two high-fat diets.
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Additional file 1: Figure S1. Experimental setup of the mouse trial. a
Litter and cage distribution of mice used in the experiments. b Scheme
of the experimental procedure. After a feeding period on control
experimental diet (CD) between the age of 8 and 10 weeks for the sake
of metabolic adaptation, GF and SPF mice were randomly divided into
four different feeding groups (n = 9–12 per diet per colonization status):
(I) CD; (II) CD supplemented with 0.2% (w/w) primary bile acids (BA); (III)
palm oil-, or (IV) lard-based high-fat diet with 48 kJ% from fat, both sup-
plemented with bile acids as above (P- and LHB, respectively). All diets
were fed ad libitum for 8 weeks. At the end of the experimental feeding
period, mice were divided into two groups prior to sampling: (I) fasted
for 6 h and sacrificed immediately; (II) fasted for 6 h followed by oral glu-
cose tolerance test (OGTT). (PNG 66 kb)

Additional file 2: Figure S2. Impact of experimental feedings and
microbial colonization on mouse metabolism. a Body weight
development over time. b Regression analysis of fasting blood insulin
and leptin concentrations in P- and LHB-fed SPF mice. See the “Methods”
section for description of statistical analyses. c Quantification of
chromogranin A-positive (ChgA+) cells in colonic tissue sections of
SPF mice from the different feeding groups. Description is as Fig. 1e.
***p < 0.01, one-way ANOVA followed by the Tukey test (performed using
Graph Pad Prism). (PDF 9366 kb)

Additional file 3: Figure S3. Impact of experimental feedings and
microbial colonization on the liver. a Liver to body weight ratio and
corresponding regression analysis. b Liver histopathology. c Hepatic
triglyceride concentrations. For detailed description of the statistical
analysis see the “Methods” section. (PNG 576 kb)

Additional file 4: Figure S4. Colonization status of SPF and GF mice. a
Cecum to body weight ratio. b Viable bacterial counts were determined
by anaerobic cultivation. C 16S rRNA gene-targeted PCR of cecal content
DNA from GF and SPF mice. Two representative samples per dietary
group are shown for each colonization status. Bands at 1.5 kbp indicate
the presence of microbes. Water was used as negative template control
(NTC); number of mice: between 9 and 12 per group; for detailed description
of the statistical analysis see the “Methods” section. (PNG 135 kb)

Additional file 5: Table S1. OTU-table based on high-throughput 16S
rRNA amplicon analysis. Data were obtained and analyzed as described in
the text. Data are sequence counts after quality checks. Only those OTUs
occurrding at > 0.25% relative abundance in at least one sample were
retained. Columns are individual mice per dietary groups as abbreviated
in the text and in other illustrations. (PNG 78 kb)

Additional file 6: Figure S5. SCFA concentrations in colonic content of
(XLSX 43 kb)

Additional file 7: Table S2. List of microbial genes differentially
expressed in the cecum of mice fed high-fat diets supplemented with
primary bile acids and with either palm oil (PHB) or lard (LHB) as fat
source. Genes included in this table are significantly (q-value < 0.05) and
substantially (>2.5-fold) overexpressed in one condition as compared to
the other.Gene annotation (KEGG) refers to the Kyoto Encyclopedia of
Genes and Genomes database annotation. (XLSX 34 kb)
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