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One Sentence Summary. Single-cell transcriptomics of malaria parasites illuminates gene          
usage across the entire life cycle, and allows precise developmental time assignment of             
parasite cells from distantly related Plasmodium species. 
 
Abstract 
Malaria parasites adopt a remarkable variety of morphological life stages as they transition             
through multiple mammalian host and mosquito vector environments. Here we profile the            
single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution           
transcriptional atlas of the entire Plasmodium berghei life cycle. We then use our atlas to               
precisely define developmental stages of single cells from three different human malaria            
parasite species, including parasites isolated directly from infected individuals. The Malaria Cell            
Atlas provides both a comprehensive view of gene usage in a complex eukaryotic parasite and               
an open access reference data set for the study of malaria parasites. 
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Single-cell RNA-sequencing (scRNA-seq) is revolutionising our understanding of heterogeneous         
cell populations, revealing rare cell types, unraveling developmental processes, and enabling           
greater resolution of gene expression patterns than has previously been possible (1). The             
ambition of cataloging the complete cellular composition of an animal is already becoming             
reality (2, 3), but thus far, atlasing efforts have focused on multicellular organisms. Here, we               
present the first comprehensive cell atlas of a unicellular eukaryote, the malaria parasite, across              
the entirety of its life cycle.  
 
Although malaria parasites are unicellular, they display remarkable cellular plasticity during their            
complex life cycle with stages ranging from 1.2 to 50 μm and spanning vastly different human                
and mosquito environments. Clinical symptoms of malaria result from asexual replication within            
red blood cells, while transmission to new hosts relies on replication in the mosquito. Both               
disease development and transmission are therefore underpinned by the parasite’s ability to            
serially differentiate into morphologically distinct forms, including invasive, replicative, and          
sexual stages (Fig. 1A). This versatility is orchestrated by tight regulation of a compact genome,               
where the function of ~40% of genes remains unknown (4). Better understanding of gene use               
and gene function throughout the parasite’s life cycle is needed to inform the development of               
much-needed new drugs, vaccines, and transmission blocking strategies. 
 
To begin to build the Malaria Cell Atlas, we profiled 1787 single-cell transcriptomes across the               
entire life cycle of Plasmodium berghei using a modified Smart-seq2 approach (5). Purification             
methods were adapted to isolate each stage of the life cycle, including challenging samples              
such as rings, which have low levels of RNA, and ookinetes, which are difficult to sort (fig. S1).                  
Ninety percent of sequenced cells passed quality control (1787/1982 cells) and poor quality             
cells were identified per stage based on the distribution of the number of genes per cell (fig. S2).                  
After quality control, we detected a mean of 1527 genes per cell across the entire data set;                 
however, the number of genes detected was highly dependent on parasite stage (p<0.001; fig.              
S2). Transcriptomes were normalized with Trimmed Mean of M-values (TMM) in groups of             
related stages for further analysis. For samples expected to be overlapping or heterogeneous             
(e.g., the blood stages), we used k-means clustering to delineate stages and confirm their              
classification based on known marker genes and correlations with bulk reference data sets (fig.              
S3, S4). This allowed for differentiation between male, female, and asexual stages in the blood,               
as well as between ookinetes and oocysts in the heterogeneous population of parasites taken              
from the mosquito midgut in which ookinetes were actively invading.  
 
All cell transcriptomes were visualised using UMAP (6) (Fig. 1B) and the first three principal               
components (Fig. 1C). Strikingly, cells oriented along a developmental path and also to some              
extent grouped by cellular strategy and host environment (e.g., actively replicative stages such             
as trophozoites and oocysts are near each other in UMAP and PCA, while PC3 separates the                
cells by host; Fig. 1B, 1C). All stages displayed marker genes concordant with known              
expression patterns (fig. S5). Merozoites, rings, trophozoites and schizonts formed a circle            
capturing the cyclical nature of the asexual intra-erythryocytic developmental cycle (IDC); (Fig.            
1B, fig. S3). For 44 h liver schizonts, we also captured the host’s transcriptome, confirming at a                 
single cell level that the parasite’s developmental progression is independent of the host cell’s              
cell-cycle state (7) (fig. S6).  
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Figure 1 . A single-cell atlas of the P. berghei life cycle. (A) The life cycle begins when an infected                   
mosquito injects sporozoites into the mammalian host. From here, parasites enter the liver, where they               
develop, replicate, and then egress to enter the IDC. In the IDC, they invade erythrocytes, where they                 
develop, replicate, burst, and re-invade erythrocytes cyclically. Sexual forms are taken up by the              
mosquito, and if fertilisation is successful, parasites invade the midgut and subsequently the salivary              
glands of the mosquito. In these different environments, parasites adopt different cellular strategies:             
replicative stages (liver schizont, blood stage schizont, oocyst), invasive stages (merozoite, ookinete, and             
sporozoite), and sexual stages (gametocytes). (B) UMAP of cells sampled from all stages of the life cycle,                 
with cells colored according to their stage from (A). (C) The first three principal components from all                 
stages in the life cycle.  
 
Our survey of the P. berghei life cycle enables a global view of gene expression and prediction                 
of function based on co-expression patterns. We constructed a k-nearest neighbour graph,            
where each node represents one of 5156 genes detected in the data set (file S1). Graph                
spectral clustering (8) was used to assign each gene to one of twenty modules based on the                 
graph distance matrix (Fig. 2A, file S1). We observed gene clusters (1 and 2) consisting mainly                
of housekeeping genes and rRNA components that were highly expressed across the full life              
cycle. At the other extreme, some clusters (clusters 18-20) showed low overall expression and              
were primarily composed of genes from rapidly evolving multigene families (pirs and fams),             
which have no 1:1 orthologs with Plasmodium falciparum (fig. S7, Fig. 2B). Several gene              
clusters (clusters 7-16) were highly expressed in a single stage. We corroborated these             
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stage-specific gene modules using two additional methods. First, we identified marker genes            
based on level of expression relative to all other stages (file S1). Additionally, for each stage we                 
defined a core transcriptome of genes where transcripts were detected in >50% of cells (file S1).                
The number of genes unique to the core transcriptome for each canonical stage ranged from               
zero in merozoites to 237 in oocysts (file S1). Core genes for each stage were overrepresented                
in clusters that coincided with expression at that stage and contained genes involved in the               
cellular strategy of that stage (e.g. DNA replication, invasion, sexual development; fig. S8),             
confirming our module assignment to specific stages. 
 
The majority of gene clusters show predominant expression in specific stages (Fig. 2B), offering              
new guidance as to where and how these genes might function. For example, CelTOS and               
CSP, both important invasion genes (9, 10), were found in cluster 16, which contains 79 genes                
most highly expressed in the invasive ookinete and sporozoite stages. Among these 79 genes              
are 34 annotated only as “conserved Plasmodium protein with no known function”. Their highly              
correlated expression with known invasion genes and their high expression in invasive stages             
will help inform future functional studies. We also overlaid asexual growth-rate data from a              
genome-wide knock-out screen (11). Genes expressed primarily in transmission stages          
(clusters 11-16) tended to show normal growth rates in asexual blood stages (Fig. 2C), offering               
further support that genes in these clusters are primarily important in transmission stages. For              
genes in each cluster, we also identified conserved motifs enriched in upstream regions as well               
putative binding sites for apetala2 (AP2) transcription factors that play critical roles in parasite              
progression through the life cycle (12) (fig. S9; file S1). This categorization will help to               
functionally annotate genes with unknown function, thereby enabling informed studies on gene            
regulation and supporting efforts to identify good candidates for transmission blocking drug and             
vaccine development. 
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Figure 2 - (A) A kNN force-directed graph of all 5156 detected genes. Each node represents a gene.                  
Nodes are coloured according to their graph-based spectral clustering assignment. (B) A heatmap of              
mean expression for each cluster across all cells in the data set. Cells are ordered by their developmental                  
progression. (C) The graph colored by relative growth rate phenotype of mutants in asexual blood-stage               
parasites (11).  
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Development is the primary driver of differences in gene expression across the life cycle.              
However, variation between individual parasites within developmental stages is important for           
adaptation to the host environment (13). The principal mechanism for intra-stage variation is             
thought to be driven by variation in expression amongst members of large multigene families              
whose functions are poorly defined (14). Most stages were enriched for variability in expression              
of such multigene families (fig. S10; file S1), the largest of which, pir, has a role in establishing                  
chronic blood stage infections (15). Subsets of pir genes showed variable expression in different              
stages, coupled with distinctive upstream sequences (fig. S11). Such putative promoter           
architectures could define stage-specific expression, with epigenetic control defining which          
subset of members are expressed. Interestingly, we found five co-expressed pairs of pir genes              
in merozoites and rings (fig. S11). Pir genes within each pair were split across different               
chromosomes but shared similar promoter architectures, with different pairs having different           
promoters (fig. S11). While the function of these co-expression patterns is as yet unknown, such               
co-expression in a single cell can only be detected using scRNA-seq, highlighting another use              
of scRNA-seq towards identifying novel expression patterns. 
 
Droplet-based approaches to generate single cell transcriptomes are nearly tenfold cheaper per            
cell than Smart-seq2, enabling the exploration of many more cells. In order to more deeply               
sample parasites along the entire IDC, we used the droplet-based 10X Chromium platform to              
simultaneously capture P. berghei and another parasite species, P. knowlesi, in a single inlet              
(16). We found that 6.34% of cells were dual-species doublets confirming a doublet rate as               
expected for conventional cells (fig. S12). After removal of doublets and additional quality             
control, we captured 4884 P. berghei cells and 4237 P. knowlesi cells.  
 
We mapped P. berghei life stages between the 10X and Smart-seq2 technologies using             
Canonical Correlation Analysis (CCA) and scmap (Fig. 3A, fig. S12) (17, 18). CCA clustering              
shows good representation of all stages in both Smart-seq2 and 10X data sets within the IDC                
(fig. S12). Using scmap-cell, 94% of cells in the 10X data were assigned to a Smart-seq2 cell                 
with high confidence, allowing us to align data sets (Fig. 3A). The additional P. berghei 10X data                 
increases the coverage of cells in our atlas and confirms our ability to evaluate single cells                
characterised by different methodologies. To account for the continuous cyclical nature of the             
data, we ordered the 10X cells in pseudotime by fitting an ellipse to the first two principal                 
components and calculating the angle around the centre of this ellipse for each cell relative to a                 
start cell (Fig. 3B, Methods). Additionally, to confirm the orientation of the cycle with real time,                
we correlated each single-cell transcriptome with published bulk reference data sets and            
observed a high correspondence between bulk time point and pseudotime order (Fig. 3B, fig.              
S13).  
 
We next used RNA velocity (19), which provides a snapshot of the dynamic state of each cell, to                  
examine transcriptional rates across this deeply sampled set of P. berghei parasites. We find              
that transcription rates vary dramatically over the IDC, with peak transcription occurring in late              
rings, consistent with bulk studies of nascent RNA transcription (Fig. 3C, fig. S14) (20).              
Additionally, we generated a 10X data set comprising 6737 cells from the IDC stages of the                
human parasite, P. falciparum. We used scmap-cell to assign each P. falciparum and P.              
knowlesi cell to the P. berghei 10X reference index built with 1:1 orthologs, thus enabling us to                 
align the developmental trajectories of these three species (Fig. 3C, fig. S14). We find the pace                
of transcription as measured by RNA velocity is similar across species, revealing conserved             
transcriptional rate in the intra-erythrocytic life of different malaria species in spite of vastly              
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different hosts, and different life cycle lengths (24 hours for P. berghei, 27 hours for P. knowlesi,                 
and  48 hours for P. falciparum; Fig. 3C, fig. S15).  
 
Transcriptomic studies of both in vivo and in vitro malaria parasites are often confounded by               
multiple life stages within a single sample. The Malaria Cell Atlas can be used to deconvolve                
bulk transcriptomic data and identify the specific life stages that were present in a bulk RNA-seq                
sample. We demonstrate this using published data sets from P. berghei (21, 22) and P.               
falciparum (23) (fig. S16). Future bulk RNA-seq studies can use the atlas to identify differences               
in cell type compositions, potentially regressing these out to calculate more accurate differential             
expression between conditions or samples. 
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Figure 3. Alignment of data sets reveals conserved transcriptional rates in the IDC. (A) P. berghei                
10X data mapped to Smart-seq2 data using scmap-cell. Cells are grouped according to their 10X cluster                
assignment (figs. S12, S14) and the SC3 (24) cluster of the Smart-seq2 cell it mapped to (fig. S14). 283                   
cells (< 6% of cells) were unassigned (UA) based on a cosine similarity threshold of 0.5. (B) PCA of P.                    
berghei IDC cells from 10X. Pseudotime of each cell was measured by fitting an ellipse to the data and                   
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calculating the angle (radians) around the centre of this ellipse for each cell relative to the start cell (red                   
point). Black points represent the mean PCA coordinates of the bulk prediction for each cell (21)(fig. S13)                 
. (C) Left: PCAs of three Plasmodium species colored by their P. berghei cell assignment based on                 
scmap. Arrows represent the relative change in transcriptional state based on RNA velocity. Right: the               
scaled increase in expression over the IDC. Cells are ordered based on the pseudotime of their scmap                 
assigned cell in the IDC P. berghei index. All three species show an abrupt increase in transcription at the                   
same equivalent pseudotime early in the IDC (ring), followed by a steady decrease in later stages.The top                 
bar represents the matched time point between the P. berghei RNA velocity-derived transcription rates              
and P. falciparum transcription rates reported by Painter et al. (20) using Pearson’s correlations.  
 
 
In vitro systems, while critical for experimental studies of Plasmodium parasites, are unlikely to              
fully capture the breadth of expression variation of parasites circulating in naturally infected             
carriers. Moreover, several human-infecting species do not have any existing expression data            
and cannot be cultured in vitro (Fig. 4A). We therefore explored whether scRNA-seq on wild               
parasites taken straight from infected people could be placed in developmental time using our              
atlas. We developed a methanol-based preservation protocol that produced Smart-seq2          
transcriptomes of equivalent quality to unpreserved cells in the lab (fig. S17). Next, we used the                
protocol to preserve samples from three naturally infected asymptomatic carriers in Mbita,            
Kenya, which we then sorted and sequenced in the UK. We recovered single cell              
transcriptomes from all three volunteers, and these field collected samples displayed similar            
quality to laboratory samples (fig. S17). P. falciparum cells mapped to our atlas revealed male,               
female, and early asexual parasites (Fig. 4B), which are the expected circulating stages for this               
species (Fig. 4A). Cells clustered by stage and not by donor indicating that comparisons both               
within host and between host are possible, and scRNA-seq on field parasites will enable              
transcriptional characterisation of natural infections. One of the volunteers was also infected            
with P. malariae leading to the first transcriptomic data for this species. Notably, we observed               
late developmental stages, which is expected as unlike P. falciparum, P. malariae late stages do               
not sequester in the deep tissue (Fig. 4). As a proof of concept, we have shown that parasite                  
species that have previously been inaccessible for expression analysis can now be            
characterised by combining scRNA-seq with the atlas. 
 
The Malaria Cell Atlas reference data set catalogs transcriptomes of every life stage along the               
parasite’s life cycle at single-cell resolution, and spans different technologies and different            
parasite species. The data are freely accessible as a processed data set and user-friendly web               
interface (25). As such, this will be a key resource for the malaria community in the study of                  
transcriptional regulation and control of developmental progression at the highest resolution.           
The Malaria Cell Atlas provides a foundation for studying the biology of individual parasites              
directly from their natural environment, an important endeavor towards characterizing          
phenotypes critical for malaria control, including those related to pathogenicity, drug resistance,            
and transmission biology. 
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Figure 4. The Malaria Cell Atlas enables high-resolution mapping of field-derived single-cell            
transcriptomes of P. falciparum and P. malariae. (A) Phylogeny of Plasmodium showing the             
mammalian host and the stages found in circulation for each species. P. falciparum and P. berghei                
sequester their late stages in deep tissue, while other species have all morphological forms in circulation.                
Species in color were profiled in the atlas. (B) P. falciparum and P. malariae field-derived cells mapped                 
onto the P. berghei 10X reference index using scmap-cell. The field-derived samples mapped to              
developmental stages that were expected in circulation for each species.  
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Materials and Methods 
 
Parasite culturing in vivo  and in vitro 
 
P. berghei parasites came from drug selection marker-free reporter line (RMgm-928) that            
expressed mCherry, under the control of the hsp70 promoter, throughout the life cycle (26).              
Parasites were propagated in female 6- to 8-week-old Theiler’s Original outbred mice supplied             
by Envigo UK. Mosquito infections were performed in two to five day old Anopheles stephensi               
mosquitoes.  
 
P. falciparum (3D7) was maintained in O+ blood using RPMI 1640 culture medium (GIBCO)              
supplemented with 25 mM HEPES (SIGMA), 10 mM D-Glucose (SIGMA), 50 mg/L            
hypoxanthine (SIGMA), 10% human serum (obtained locally in accordance with ethically           
approved protocols), in a mix containing 5% O2, 5% CO2 and 90% N2.  
 
P. knowlesi (strain A1-H.1) was maintained in continuous culture (27) in O+ blood, using RPMI               
1640 culture medium (GIBCO) supplemented with 25 mM HEPES (SIGMA), 22.2 mM            
D-Glucose (SIGMA), 50 mg/L hypoxanthine (SIGMA), 0.5% (wt/vol) Albumax II and 10% horse             
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serum, in a mix containing 5% O2, 5% CO2 and 90% N2. Cultures were maintained for >6 weeks                  
without synchronisation to ensure good representation of all stages in the IDC.  
 
Human O+ erythrocytes were supplied by NHS Blood and Transplant, Cambridge, UK. All             
samples were anonymized. Use of erythrocytes from human donors for Plasmodium culture was             
approved by the NHS Cambridgeshire 4 Research Ethics Committee (REC reference           
15/EE/0253) and the Wellcome Sanger Institute Human Materials and Data Management           
Committee.  
 
Parasite isolation, cell sorting and library preparation for Smart-seq2 scRNA-seq 
 
Isolation of extraerythrocytic forms from HeLa cells 
HeLa cells were cultured in DMEM supplemented with 10% FCS. P. berghei sporozoites were              
produced by homogenisation of 50 dissected sets of salivary glands from female An. stephensi              
mosquitoes 22 days after an infectious blood meal. Sporozoites were counted on a             
hemocytometer, resuspended in DMEM and added to an 80% confluent monolayer of HeLa             
cells at multiplicity of infection of one. The plate was spun at 300 g for 3 min and incubated at                    
37°C for 2 h, cells were then washed twice with PBS and placed back in complete medium.                 
After 24 h cells were split back at 70% confluency. Cells were harvested by trypsinization 44 h                 
after infection, washed once in PBS and sorted immediately.  
  
Isolation of blood-stage merozoites 
P. berghei parasites were purified from an overnight (24 h) 50 mL culture with 1 mL of infected                  
blood using a 55% Histodenz cushion (SIGMA) as detailed elsewhere (28). Purified schizont             
stages were stained with Hoechst 33342 (ThermoFisher) at a final concentration of 2.5 µg/ml for               
10 min on ice, pelleted at 450 g for 3 min, resuspended in 1 mL of medium and passed through                    
a 1.2 µm filter (Pall Life Sciences). Merozoites in the filtered fraction were sorted immediately.  
 
Isolation of ring-stage parasites  
A mouse infected with RMgm-928 was terminally bled by cardiac puncture using a syringe              
containing heparin. The ~1 mL blood sample was immediately transferred onto ice and stained              
with 2.5 µg/ml Hoechst 33342 in PBS for 15 min (along with unstained controls for cell sorting).                 
Cells were washed for 3 min at 800 g in RPMI and then once more for 3 min at 800 g in PBS.                       
Parasites were then incubated in 0.02% saponin for 3 min, and then spun down at 1100 g at                  
4°C. Parasites were washed once in PBS for 3 min at 1100 g and then resuspended in 1 mL                   
PBS for FACS.  
 
Isolation of ookinetes from the blood bolus  
Ookinetes were isolated from the blood bolus of An. stephensi midguts at 18 and 24 h post                 
blood feeding from an RMgm-928 infected mouse at approximately 5% parasitemia. A lateral             
incision was made along the dissected mosquito midgut tissue to release the blood bolus and               
remaining blood was rinsed out using a syringe with PBS. Boluses from five midguts were               
pooled, diluted in 500 µ l PBS and stained with SYBR green. In order to discriminate ookinetes                
from other stages in the blood bolus, a control feed was performed using a HAP2 --mCherry               
infected mouse. HAP2 is essential for fertilization, so the bolus contained parasites but no              
ookinetes (29). This allowed us to enrich our sample for ookinetes by gating on the level of                 
mCherry and SYBR green fluorescence (fig. S1). 
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Isolation of invading ookinetes and oocysts from the midgut  
At 48 h and four days post-bloodmeal invading ookinetes and oocysts were isolated from ten               
pooled infected midguts. Dissected midguts were disassociated in 200 µ l of an enzymatic             
cocktail of collagenase IV (1 mg/ml) and elastase (1 mg/ml). The dissociation mixture was              
incubated at 30°C for 30 min with shaking at 300 rpm. Every 15 min tissue was mechanically                 
disrupted by pipetting up and down 40 times. In order to capture only invading ookinetes at 48                 
h, the remaining blood bolus was removed as described above. As a control, midguts from               
mosquitoes that had fed on a HAP2 --mCherry mouse were disassociated to confirm that no              
remnants of the blood meal and non-invading parasites remained in the gut. 
 
Isolation of salivary gland and injected sporozoites  
Salivary glands from 20 An. stephensi infected with RMgm-928 were dissected on day 26              
post-bloodmeal. Sporozoites were released from the glands by homogenising the samples           
manually with a pestle in PBS. Samples were filtered with a 20 µm filter prior to sorting to                  
remove large fragments of mosquito tissue. Simultaneously, female An. stephensi mosquitoes           
from the same infectious feed were fed using a standard membrane feeding assay containing              
approximately 600 µl fructose solution (80 g/L) with 10% human serum (filter sterilized and heat               
inactivated). Mosquitoes were exposed to the feeder for 12 min. After this, the remaining              
fructose/serum solution was removed from the feeder and the presence of sporozoites in this              
solution was microscopically confirmed. Samples were then taken directly to cell sorting. 
 
Preservation and isolation of cells from fresh peripheral blood samples 
Samples were procured in the district of Mbita (Kenya) from asymptomatic volunteers in             
accordance with a study protocol reviewed and approved by the KEMRI Scientific and Ethics              
Review unit (KEMRI/RES/7/3/1). Following screening with a rapid diagnostic test (SD           
BIOLINE™ Malaria Ag P.f/Pan (HRP-II/pLDH)), venous blood samples from infected volunteers           
was collected in EDTA-vacutainers. 1 mL of each sample was resuspended in 5 mL of               
suspended animation buffer (10 mM Tris, 150 mM NaCl, 10 mM glucose, pH 7.37)(30) and               
placed on a magnetic column (MACs, Miltenyi). Late stage parasites were eluted, washed once              
in suspended animation buffer and resuspended in 200 µl of PBS. Samples were then fixed with                
800 µl of methanol (Sigma) and preserved at -20°C. Another 1 mL was leucodepleted with a                
Plasmodipur filter (EuroProxima), washed twice in PBS, lysed twice with 0.15% Saponin            
(Sigma), washed twice in PBS and resuspended in 200 µl of PBS. Samples were then fixed with                 
800 µl of methanol (Sigma) and preserved at -20°C. Samples were rehydrated with PBS and               
stained with 2.5 µg/ml Hoechst in PBS for 15 min, and washed once in PBS prior to sorting. 
 
Cell sorting 
All parasite cell sorting was conducted on an Influx cell sorter (BD Biosciences) with a 70 µm                 
nozzle. The HeLa samples were sorted on a Sony SH800 with a 100 µm nozzle chip. Parasites                 
were sorted by gating on single cell events and mCherry fluorescence (all stages) or Hoechst               
fluorescence (merozoites, field parasites). All parasites were sorted into nuclease-free 96 or 384             
well plates (ThermoFisher) containing lysis buffer as described previously (5). Sorted plates            
were spun at 1000 g for 10 seconds and immediately placed on dry ice. 
 
Library preparation and sequencing 
Reverse transcription, PCR, and library preparation were performed as detailed previously (5).            
All libraries were prepared in 96-well plates except a single 384-well plate of late blood stages.                
In the latter case the lysis buffer volume was reduced to 2 µl, and the elongation temperature of                  
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the PCR was reduced to 68°C. Cells were multiplexed up to 384 and sequenced on a single                 
lane of HiSeq 4000 with 75 bp paired-end reads. 
 
Parasite preparation and loading of 10X scRNA-seq 
Parasite preparation 
For P. berghei samples, blood was obtained by terminal bleed and passed through a pre-wetted               
Plasmodipur syringe filter (Europroxima) to filter out white blood cells prior to culturing. Three              
cultures were generated: cultured for 30 min, 10 h, and 20 h at 36.5°C with shaking at 65 RPM.                   
Cultures were smeared prior to harvesting in order to ascertain parasitemia. After harvesting,             
the total number of red blood cells in each sample was counted using a disposable               
hemocytometer. This count was corroborated using a Countess cell counter. The number of             
infected red blood cells in each culture was used as a cell count and cells were pooled 1:1:1                  
from the three time points and kept on ice. For P. knowlesi, the parasitemia of the cultured                 
desynchronized parasites was measured and then cells were harvested by centrifugation at 450             
g for 3 min at 4°C. Supernatant was removed and parasites were washed twice in PBS before                 
resuspension in PBS. The concentration of red blood cells was then calculated by manual              
hemocytometer, before calculating the final infected red blood cell concentration using the            
parasitemia. Cells were then pooled 1:1 with the P. berghei cell mixture described above in               
order to run a dual species 10X analysis to evaluate doublet rates. P. falciparum parasites were                
prepared in the same manner as P. knowlesi but were run on their own 10X inlet.  
 
10X loading  
Cells were loaded according to manufacturer's instructions to recover 10000 cells per inlet.             
Chromium 10X v2 chemistry was used and libraries were prepared according to manufacturer's             
instructions. Each 10X input library was sequenced across two Hiseq 2500 Rapid Run lanes              
using 75 bp paired-end sequencing. 
 
Bulk transcriptomics 
Three P. berghei samples were prepared for bulk RNA-seq including early asexuals, late             
asexuals, and ookinetes. Mice infected with hsp70p:mCherry P. berghei were terminally bled by             
cardiac puncture using a syringe containing heparin. For the two asexual samples, the blood              
was treated with ammonium chloride to remove uninfected erythrocytes (31) either straight after             
the bleed (early) or after 24 h of ex vivo culture (late). For the ookinete sample, the blood was                   
cultured for 24 h, as described (32). RNA was extracted with TriZol according to the               
manufacturer's recommendations, assayed with an Agilent RNA 6000 Nano assay and           
transcriptomes were generated as described. A modified RNA-seq protocol was used. PolyA+            
RNA (mRNA) was selected using magnetic oligo-d(T) beads. Reverse transcription using           
Superscript III (Life) was primed using oligo d(T) primers; second strand cDNA synthesis             
included dUTP. The resulting cDNA was fragmented using a Covaris AFA sonicator. A             
“with-bead” protocol was used for dA-tailing, end repair and adapter ligation using “PCR-free”             
barcoded sequencing adaptors (NEB) (33). After two rounds of SPRI cleanup (Agencourt) the             
libraries were eluted in EB buffer and USER enzyme mix (NEB) was used to digest the second                 
strand cDNA, generating directional libraries. The libraries were quantified by qPCR and            
sequenced on an Illumina HiSeq 4000. 
 
Mapping and generation of expression matrices for scRNA-seq transcriptomes 
Smart-seq2 mapping 

 
15 

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/527556doi: bioRxiv preprint 

https://paperpile.com/c/DQAFC1/uZhx
https://paperpile.com/c/DQAFC1/uZhx
https://paperpile.com/c/DQAFC1/uZhx
https://paperpile.com/c/DQAFC1/kb04
https://paperpile.com/c/DQAFC1/kb04
https://paperpile.com/c/DQAFC1/kb04
https://paperpile.com/c/DQAFC1/zIJp
https://paperpile.com/c/DQAFC1/zIJp
https://paperpile.com/c/DQAFC1/zIJp
https://doi.org/10.1101/527556
http://creativecommons.org/licenses/by/4.0/


Single-cell Plasmodium transcriptomes were mapped as reported previously (5). Briefly,          
trimmed reads were mapped using HISAT2 (v 2.0.0-beta) (34) to the P. berghei v3 genome               
(October 2016), and using STAR (v 2.5.0a) to the P. falciparum v3 (January 2016) and P.                
malariae v1 (March 2018) genomes using default parameters (35). Reads were summed            
against genes using HTseq (v 0.6.0) (36). For the co-expression of HeLa cells and liver stage                
parasites analysis, both HeLa cells and parasites were mapped to respective genomes with             
STAR (v 2.5.1b) using default parameters (35).  
 
10X data alignment, cell barcode assignment, and UMI counting 
The Cell Ranger Single-Cell Software (version 2.1.0) was used to process sequencing reads,             
assigning each read to a cell barcode and UMI using standard parameters (16). After barcode               
assignment, the cDNA insert read was aligned using cell ranger (v 2.1.0) to a combined               
reference genome of P. knowlesi (March 2014) and P. berghei (July 2015), and the P.               
falciparum run was aligned to the 3D7 genome v3 (January 2016). These reference genomes              
were all obtained from https://www.sanger.ac.uk/resources/downloads/protozoa/. 
 
Filtering and normalisation of scRNA-seq data 
Smart-seq2 filtering and normalization 
Poor quality cells were identified on a per stage basis based on the distribution of the number of                  
genes per cell, given the high variability of genes detected between stages (fig. S2). Cells with                
fewer than 1000 genes per cell and 2500 reads per cell were removed from the liver stage                 
parasites, trophozoites, male and female gametocytes, ookinetes, ookinetes/oocysts, and         
oocyst stages. Cells with fewer than 500 genes per cell and 2500 reads per cell were removed                 
from schizonts and injected sporozoites. Cells with fewer than 40 genes per cell and 1000 reads                
per cell were removed from merozoites, rings, and gland sporozoites (fig. S2). Additionally, we              
removed genes from further analysis that were detected in fewer than two cells across the entire                
data set. The final data set contained 1787 high-quality single cells from 1982 sequenced and               
5156 genes out of 5245 genes with annotated transcripts. Transcriptomes were normalized with             
the weighted Trimmed Mean of M-values (TMM) method (37). Cells were normalized either all              
together or in five groups containing biologically similar stages: groups included IDC, liver-stage,             
gametocytes, ookinetes/oocysts, and sporozoites. Visual inspection of the relative expression          
plot (fig. S2) showed little difference between normalization by biological group versus all             
together. Unless otherwise specified, further analysis was done on cells normalized by            
biological group.  
 
10X filtering and normalisation  
For P. berghei, the output filtered matrix from Cell Ranger was read into Seurat (v 2.3.4) (17).                 
Low quality P. berghei cells with fewer than 230 detected genes were removed from further               
analysis. Initial inspection of filtered cells in the P. knowlesi and P. falciparum data sets showed                
that early-stage and late-stage IDC parasites were missing. These stages express fewer genes             
per cell relative to later stages based on our Smart-seq2 data and we have previously observed                
a lower detection of genes per cell in P. falciparum (5), suggesting these cells may have been                 
removed by Cell Ranger’s default thresholding. Using the raw output matrices for these species,              
we adjusted thresholds to retain cells with >100 genes per cell for P. falciparum and >150 genes                 
per cell for P. knowlesi. Intraspecies doublets were identified and removed from all three              
species using doubletFinder (v 1.0.0) (38). For the P. berghei/P.knowlesi run, we identified             
interspecies doublets as cells that contained >50 UMIs that mapped to each species (1005              
cells) (fig. S12A). The expected intraspecies doublet rate was calculated based on this             
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interspecies doublet rate, the relative proportion of each species, and the additional quality             
control thresholding. For P. falciparum, the intraspecies doublet rate was calculated from the             
expected doublet rate table provided by 10X genomics. Thus, the number of intraspecies             
doublet cells removed were as follows: P. berghei = 200, P. knowlesi = 287, P. falciparum = 530                  
(fig. S12B). Doublets do not show a stage-specific bias (fig. S12B).  
 
Single-cell transcriptome analysis of Smart-seq2 data 
 
Cell clustering and projection 
For timepoints where a heterogeneous population of stages was collected, we used k-means             
clustering using SC3 (version 1.7.7) to delineate stages and confirmed their classification based             
on known marker genes (24). This method was used for classification of males, females,              
trophozoites and schizonts, as well as ookinetes and oocysts (fig. S3, S4). For visualization in               
two dimensions we performed Uniform Manifold Approximation and Projection (UMAP) (6) with            
the python package umap version 0.1.1 using the correlation distance metric, k-nearest            
neighbors of ten, min_dist of one, spread of two, and bandwidth of one. 
 
HeLa QC and cell-cycle analysis 
We performed initial filtering to identify the most robustly expressed genes across single-cells.             
Genes were required to be expressed in >30 cells (of 164 cells) and cells needed to express                 
>500 genes in both parasite and matched HeLa cells to be retained. This resulted in 163                
matched cells with 4480 parasite genes and 8059 HeLa cell genes. We performed clustering of               
single HeLa and parasite cells independently using either all highly variable genes or subsets of               
annotated cell cycle genes. The highly variable genes are identified by plotting the averaged              
gene expression against gene dispersion (similar to SEURAT, (17)). Louvain clustering was            
performed on single HeLa cells using only cell cycle genes resulting in four louvain groups (fig.                
S6). These groups are highly indicative of cell cycle progression starting from group 0 (G0/G1)               
to group 1 (G1S) to group 3 (G2) to group 4 (G2M). 
 
Pseudotime 
To order cells in a developmental trajectory, we reconstructed pseudotime using SLICER (39).             
Variable genes were identified within SLICER and then selected to build the trajectory based on               
a neighbourhood variance that identifies genes that vary smoothly across the cell sets. SLICER              
was run independently on three groups of cells: (1) the liver stage parasites, (2) the entire IDC                 
(merozoites, rings, trophozoites and schizonts), (3) the ookinete to oocyst transition (bolus            
ookinetes, ookinete/oocyst, and oocyst). We assessed the performance of the algorithm by            
confirming the pseudotime order matched the ground truth time point collections and expression             
of known marker genes over development (e.g. fig. S4). To order all cells across the life cycle                 
(Fig. 3B, fig. S10, S11), we compiled these pseudotime orders with known timing of other               
stages that did not show a developmental signature (mature gametocytes and sporozoites). 
 
Gene clustering and visualization of Smart-seq2 data 
The gene count matrix was normalized by dividing by the mean counts for each gene and log                 
scaling. This was done to reduce the amount to which gene clusters were driven by total gene                 
expression and instead focus on the pattern of expression across cells. A k-nearest neighbor              
(kNN) graph was formed on the gene normalized expression matrix with the Nearest Neighbors              
subpackage of python’s scikitlearn version 0.19.2 with parameters of k = 5 and a manhattan               
distance metric (40). k of 5 was chosen because it was smaller than the smallest cluster we                 
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were interested in detecting and the graph appeared robust from k=3 to k=20. We then               
performed spectral graph clustering on this kNN graph using the SpectralClustering subpackage            
of python’s scikitlearn version 0.19.2 (8, 41). The graph was visualized in Gephi with the               
forceatlas 2 graph layout algorithm in linlog mode to better show the clustering structure of the                
data (42, 43 ). 
 
Marker genes 
Marker genes for each stage were identified in two ways. Firstly, differentially expressed genes              
were calculated using the findMarkers function in scran (44). This function performs a Welch              
t-test between pairs of stages and then identifies genes that are uniquely expressed in that               
cluster (pval.type = “all”, direction = “up”). This method was used to identify markers for each                
canonical stage, as well as marker genes within each host (mouse vs. mosquito) and each               
cellular strategy (invasive, replicative, and sexual forms) (file S1). Secondly, marker genes were             
identified by defining a core set of genes for each stage as all genes that are expressed in more                   
than fifty percent of cells. To avoid bias from the number of cells sampled within a stage, sixty                  
cells were randomly selected per stage. We defined the unique core transcriptome as genes              
from each stage’s core that were unique to that stage’s core (i.e., not also found in more than                  
50% of cells from any other stage) (file S1).  
 
Motif Discovery 
Motif discovery was performed using DREME which searches for short (8 bp) motifs expressed              
as regular expressions (consensus sequences allowing for wildcards but not variable length            
gaps) in a given set of sequences (45). The 1000 bp upstream of the start codon for each gene                   
detected in the Smart-seq2 data set was used in the analysis. For each cluster the input data                 
set was the upstream regions of each gene within that cluster, and the negative set was the                 
upstream region of genes that were not in that cluster.  
 
Analysis of development-independent gene expression variability 
Almost all genes in Plasmodium genomes vary in expression over the life cycle. This is mainly                
thought to be related to development of the parasite as it transitions between different life               
stages. We first identified highly variable genes in each stage independently. In the Smart-seq2              
data, we used a general linear model to regress out the effect of pseudotime within developing                
stages (liver stage exo-erythrocytic forms, or EEFs, merozoites, rings, trophozoites, schizonts,           
ookinetes and oocysts). We preserved the mean expression of each gene by adding the              
predicted value of the mean to the residuals of the general linear model, in addition we set any                  
negative corrected values to zero in order to preserve the non-negativity of gene expression              
values. Finally, since the correction often shifted zeros to values only slightly above zero, we               
rounded these values down in order to meet the assumptions of the M3Drop model. We then                
used M3Drop (46) to identify genes with remaining heterogeneity (False Discovery Rate <=             
0.05), adjusted for mean-expression level. Enrichment of each gene family within each stage             
was determined using the hypergeometric test with correction by FDR and a cut off of 0.05. 
  
We examined pir gene promoter architectures to determine whether particular gene expression            
patterns might be driven by transcription factors. Firstly, we identified the 5’ UTR and upstream               
intergenic (putative promoter) regions of the pir genes shown in fig. S11. This was done               
manually by browsing the genome and referring to three P. berghei bulk RNA-seq samples of               
mixed early and late asexual stages as well as ookinete stages. Illumina reads from these               
libraries were mapped to the P. berghei v3 genome sequence using HISAT2 v2.0.0 (34), with               
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--rna-strandness RF --max-intronlen 5000. The data were viewed using Artemis v18.0.0 (47). 5’             
UTRs were defined as the region between the start codon and where RNA-seq coverage              
dropped to zero in at least two of the three samples. Upstream intergenic regions were defined                
from the start of the 5’ UTR to the next, upstream increase in coverage from one or more                  
RNA-seq libraries. The upstream intergenic regions were BLASTed against each other (blastall            
2.2.25, -p blastn -e 1e-20). The sequences involved in each hit were extracted, excluding those               
overlapping others with lower E-values. These sequences were then BLASTed against each            
other (blastall 2.2.25, -p blastn -e 0.01) and the resulting similarity matrix was used to cluster                
them with MCL v12-068 (48) with the inflation parameter set to 1.4. Sequences were collected               
together based on the clustering and aligned using MUSCLE v3.8.31 (49). The alignments were              
then trimmed by identifying highly conserved regions. Alignments in non-overlapping windows of            
ten nucleotides were evaluated, counting the proportion of sequences that were ungapped. An             
alignment position was called as good if >= 70% of sequences were ungapped at that position.                
A window of ten nucleotides was called as a block if it contained no more than three bad                  
positions. If there was more than one bad block in a row, a conserved region was ended. Only                  
the longest conserved region from an alignment was kept. Sequences which began or ended              
within the conserved region were then removed. These alignments were used to build             
nucleotide profile Hidden Markov Models (HMMs) using HMMer i1.1rc3 (50). The models were             
then searched against the P. berghei v3 genome sequence, also using HMMer, to identify              
further members of the sequence families. Each hit was associated with the nearest             
downstream protein-coding gene. We identified eight upstream intergenic (promoter) sequence          
families associated with pir genes that we called A, C, D, F, G, H, I J (fig. S11) 
  
RNA Velocity 
For each IDC (ring, trophozoite, schizont) Smart-seq2 cell that passed quality control, the             
exonic, intronic, and mixed reads were counted using RNA velocity (19). Intronic and mixed              
reads were combined to estimate the total unspliced reads in the data, whereas purely exonic               
reads were assumed to represent spliced transcripts. Cells were split by life cycle stage as for                
the pseudotime analysis, and the expected ratio of spliced to unspliced reads for each gene was                
fit using RNA velocity, and residuals for each cell were estimated for each group independently.               
To ensure we only considered genes that were fit well by the RNA velocity model, we required a                  
minimum slope of 0.1 (increased from the default setting of 0.05) and a minimum correlation               
between spliced and unspliced reads of 0.5 (increased from the default setting of 0.05). To               
improve fits, we used the cells with the top and bottom 7.5% of expression levels for the fitting.                  
Genes where over 90% of residuals were either positive or negative were excluded as poorly fit                
genes. This resulted in 1,345 genes x 548 cells for the IDC. 
 
10X single-cell transcriptome analysis 
 
Cell clustering 
To identify male and female gametocytes in the P. berghei data, data were log normalized, and                
clusters were identified using the shared nearest neighbor modularity optimization based           
clustering algorithm in the FindClusters() function in Seurat (17). Two clusters corresponded to             
gametocytes based on expression of marker genes. These clusters were removed when            
comparing the data to the Smart-seq2 via CCA, as well as for the pseudotime assignment, and                
alignment of the three data sets in scmap (Fig. 3). The three species IDC PCAs were generated                 
on TMM normalized data in scater (version 1.6.3) (51). Additionally, we identified clusters using              
the CCA in Seurat to compare the two methods of scRNA-seq (Smart-seq2 and 10X) (17). We                

 
19 

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/527556doi: bioRxiv preprint 

https://paperpile.com/c/DQAFC1/Hj6G
https://paperpile.com/c/DQAFC1/Hj6G
https://paperpile.com/c/DQAFC1/Hj6G
https://paperpile.com/c/DQAFC1/LvSq
https://paperpile.com/c/DQAFC1/LvSq
https://paperpile.com/c/DQAFC1/LvSq
https://paperpile.com/c/DQAFC1/WuMe
https://paperpile.com/c/DQAFC1/WuMe
https://paperpile.com/c/DQAFC1/WuMe
https://paperpile.com/c/DQAFC1/q7gp
https://paperpile.com/c/DQAFC1/q7gp
https://paperpile.com/c/DQAFC1/q7gp
https://paperpile.com/c/DQAFC1/UsTKy
https://paperpile.com/c/DQAFC1/UsTKy
https://paperpile.com/c/DQAFC1/UsTKy
https://paperpile.com/c/DQAFC1/cZETH
https://paperpile.com/c/DQAFC1/cZETH
https://paperpile.com/c/DQAFC1/cZETH
https://paperpile.com/c/DQAFC1/eR37
https://paperpile.com/c/DQAFC1/eR37
https://paperpile.com/c/DQAFC1/eR37
https://paperpile.com/c/DQAFC1/cZETH
https://paperpile.com/c/DQAFC1/cZETH
https://paperpile.com/c/DQAFC1/cZETH
https://doi.org/10.1101/527556
http://creativecommons.org/licenses/by/4.0/


identified nine clusters of cells that had good representation in both data sets (fig. S12C). One                
cluster, “8”, contained only 15 cells across the two data sets and was removed from further                
analyses.  
 
SCmap 
We used scmap (version 1.1.5) (18) to compare data sets. We built three sets of cell indices that                  
could be queried with the scmapCell() function that would allow each individual cell in the query                
data set to be mapped to a reference index (18). To compare the Smart-seq2 and 10X data we                  
built an index of the blood-stage Smart-seq2 data (including gametocytes) and mapped the full              
P. berghei 10X data set (including gametocytes) onto it. Because the IDC consists of a               
continuous set of cell-stages and not discrete clusters, we modified the cell assignment method              
in scmap: cells were assigned based on the top nearest neighbor. If the top cell had a cosine                  
similarity of greater than 0.5, the query cell was assigned to that indexed cell along with its                 
supporting metadata (cluster assignment, bulk prediction, pseudotime value). Using this cosine           
similarity threshold, 94% of 10X P. berghei cells were assigned to a cell in the SS2 P. berghei                  
reference data set. 
 
To align the IDC trajectories across the three 10X datasets, we first compiled a set of                
one-to-one orthologs between ten Plasmodium species (P. berghei, P. knowlesi, P. falciparum,            
P. malariae, P. ovale, P. vivax, P. gallinaceum, P. yoelii, P. chabaudi, P. cynomolgi) from               
OrthoMCL (52) (file S1). Using these orthologs, we built an scmap reference index that              
contained all P. berghei 10X IDC cells (gametocytes removed). We mapped both the P.              
falciparum and P. knowlesi data to this ortholog reference index. In addition to identifying the top                
nearest neighbor cell, we were able to incorporate information from the top three nearest              
neighbors to assign each cell based on the principal component space. To do this we took a                 
mean of the first two principal components of the top three nearest neighbors. Given this               
coordinate assignment, we located the nearest cell on the PCA and assigned the query cell to                
this index cell. If all three of the nearest neighbors had a cosine similarity of 0.3, then the query                   
cell was given an assignment. With this lower cosine similarity threshold to account for cross               
species differences, we were able to assign over 96% of P. falciparum and 99% of P. knowlesi                 
cells to a P. berghei index cell. 
 
Finally, to map single cell samples from the field, we built a 1:1 ortholog index of the complete                  
10X P. berghei data set, including the gametocytes that were excluded for the IDC evaluations.               
We used this reference because (i) of its full representation of the IDC and mature gametocytes                
(ii) it originates from an in vivo system like the volunteer cells. Because the gametocyte data                
was more sparse, the IDC cell assignment was based on the top nearest neighbor alone along                
with a cosine similarity threshold of 0.4. Using this method, we were able map 13 P. malariae                 
cells and 22 P. falciparum cells, assigning each cell to a developmental time.  
 
 
‘Clock’ pseudotime 
For the three 10X data sets, pseudotime around the IDC was calculated by fitting an ellipse to                 
the data projected into the first two principal components using direct least squares (Fig. 3C, fig.                
S14). Angles around the centre of this ellipse were calculated for each cell and oriented to a                 
starting cell which was defined using known markers. In order to align the three species in                
pseudotime, 10X data from P. knowlesi and P. falciparum were projected directly onto the P.               
berghei reference using scmap (18) and cells were given the pseudotime of their P. berghei               
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assigned cell. This ‘clock’ pseudotime was aligned to real-time progression through the IDC             
using two methods. First, bulk RNA-seq data (21), from synchronized P. berghei parasites             
across twelve equally spaced time points around the IDC was projected onto our single-cell              
reference and their position in the first two principal component space was estimated from the               
average of their three nearest neighbours. These principal component locations were used to             
calculate a respective pseudotime for each bulk sample. Secondly, we mapped our single-cell             
RNA-seq transcriptomes onto the densely sampled P. falciparum bulk RNA-seq time-course           
generated by Painter et al. (20). Genes were mapped across species using 1:1 orthologs (see               
above) and log-normalized RNA velocity-derived transcription rates were matched to the           
log-normalized transcription rates reported by Painter et al. using Pearson correlations.  
 
RNA velocity 
We also ran RNA velocity on the 10X single-cell RNA-seq data from each species              
independently. Cells were filtered as described above, genes were filtered to exclude genes that              
didn’t have at least one unspliced transcript in at least 10 cells and one spliced transcript in at                  
least 20 cells. To account for the high number of zeros present in 10X data we increased the k                   
for the cell and gene k-nearest neighbour smoothing included in RNA velocity to 50 and 5,                
respectively. To ensure good fits to the genes, we required a minimum slope of 0.2 and                
minimum correlation of 0.2 and used the top and bottom 20% of cells for the fitting. In addition,                  
we excluded poorly fit genes as above. After this filtering, P. knowlesi data contained 1,235               
genes x 4,237 cells, P. berghei data contained 1,368 genes x 4,763 cells, and P. falciparum                
data contained 645 genes x 6,737 cells.  
 
Deconvolution of bulk transcriptomic samples using the scRNA-seq 
The P. berghei 10X data was used as a reference and marker genes were called for each                 
cluster in Seurat (v 2.3.4) using the Standard AUC classifier method Genes that were not               
detected in >40% of cells and negative markers were excluded. The top 10 marker genes in                
each cluster, by power, were identified and used for deconvolution (n = 107). BSeq-sc (v 1.0)                
(53) was then used to estimate the proportion of cell types in each bulk sample using the default                  
analysis pipeline. 
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Supplementary Figures 
 

 
 

Fig. S1 . Isolation of ookinete and ring-stage parasites.  
(A-C): FACS gating for ookinete isolation from the blood bolus 18 and 24 h after feeding was                 
determined using an mCherry expressing HAP2 mutant as a negative control. Parasites were             
expressing mCherry and stained with SYBR green. (A) FACS plot of the blood bolus contents               
from the HAP2 mutant control. (B) FACS plot of the wild type blood bolus. Cells that were                 
sequenced are coloured by expression of the ookinete marker gene SOAP (54) and shaped by               
the SC3 cluster assignment. (C) A PCA of profiled cells coloured by expression of SOAP and                
shaped by SC3 cluster. Clusters 1 and 4 were maintained in the data set and likely represent                 
mature ookinetes (cluster 1) and developing retorts (cluster 4). Cluster 3 may correspond to              
non-replicated zygotes: cells are expressing Pbs25 (55), but not SOAP. Cluster 2 may             
correspond to unfertilised parasites as there was inconsistent expression of canonical marker            
genes and generally lower levels of SYBR green. (D-E): To evaluate the protocol for              
saponin-mediated lysis of ring-stage infected red blood cells, a 96-well Smart-seq2 plate was             
sorted consisting of ¼ schizonts, ¼ unlysed rings, and ½ lysed rings. (D) The lysed and unlysed                 
cells were collected from the same mouse controlling for life cycle stage. However, in order to                
confirm that we had sorted rings rather than early trophozoites, we used Spearman's rank-order              
correlation to correlate each cell to published bulk time course data (21). The maximum r value                
for each cell was then chosen and the cell was assigned that time point. The jitter plot shows                  
the predicted life cycle stage for each sorted sample, confirming similar predicted stages among              
lysed and unlysed rings. Data points are coloured according to the sorted population they              
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belong to. Cells were then filtered according to their life cycle stage prediction, so as to remove                 
cells that clearly did not belong to that cell type. Specifically, cells from the schizont culture that                 
were predicted to be <10 h and and cells from the ring culture that were predicted to be >15 h                    
were removed. Cells that were removed from further analysis are shown on the plot. (E) A violin                 
plot showing the distribution of genes per cell per stage as well as the recovery rate for each                  
stage. Lysing the red blood cell of ring-stage parasites increased the recovery rate and yielded               
a similar median number of genes per cell (red point) when compared to rings from un-lysed red                 
blood cells.  
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Fig. S2. Quality control and normalization. (A) The number of genes detected per cell was               
dependent on life stage (p<0.001, ANOVA: Genes detected ~ parasite stage). (B) Poor quality              
cells were identified on a per stage basis based on the distribution of the number of genes                 
detected per cell. The maximum number of genes per cell was found in oocysts, at day 4 post                  
mosquito infection, with a median of 3318 genes per cell, while the minimum number of genes                
detected was found in merozoites with a median of 200 genes per cell. This is consistent with                 
smaller cells having less total mRNA (56), and likely reflects biological differences in the mRNA               
content of each life stage. Interestingly, we detect almost twice the number of genes in               
sporozoites taken directly from injected saliva (n genes=868) relative to sporozoites that were             
isolated from salivary glands (n genes=448), suggesting a potential upregulation of gene            
expression at this transition. Quality control was also performed based on the number of reads               
per cell. The percentage value includes cells that were excluded based on genes and reads per                
cell. (C) Total counts per cell vs. total genes detected in all Smart-seq2 cells. Each stage is fit                  
with a loess function. Sequencing saturation was likely reached because deeper sequencing did             
not result in an increase in the number of genes detected, irrespective of life stage. (D) Relative                 
Expression plots for all cells across all genes. The top panel shows the relative expression of                
the raw counts data. The second panel shows the relative expression whereby cells have been               
TMM-normalised as one set. The bottom panel shows the same plot but for cells that have been                 
subsetted into their respective groups of stages: Liver schizonts, IDC, gametocytes,           
ookinetes/oocysts, sporozoites, normalised by TMM, and then re-pooled. Based on the plots,            
normalisation method does not have a large effect on the relative expression; cell expression              
patterns have been smoothed in both methods. Unless otherwise stated, the grouped            
normalised data were used for further analyses. 
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Fig. S3. Classification of blood-stage parasites. Late-stage blood-stage parasites         
(trophozoites, schizonts and gametocytes) were purified from an overnight (20 h) culture of             
infected blood. Classification of these parasites was determined using single-cell consensus           
clustering in SC3 (24). (A) PCA of all late-stage parasites coloured by SC3 cluster assignment.               
(B) The PCA coloured by expression of HAP2, an established male marker gene (29),              
supporting assignment of cluster 2 cells as male gametocytes. (C) The PCA coloured by              
expression of Pbs25, an established female marker gene (55), supporting assignment of cluster             
1 cells as female gametocytes. (D) PCA of asexual parasites (primarily trophozoites and             
schizonts). Points are shaped by SC3 cluster and coloured by the Spearman correlation with              
bulk time-course data from (21). A good correspondence between SC3 clusters and the bulk              
data is observed with trophozoites classified as 8-16 h, and schizonts greater than 16 h. A few                 
parasites that cluster with schizonts had the strongest correlation with ring stages, which could              
be a potential contamination of a small number of rings in the purification process.  
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Fig. S4. The ookinete to oocyst transition. In order to understand fine-scale changes in              
transcription over developmental time, we ordered cells from three experimental time-points           
(bolus ookinetes, the ookinete/oocyst transition period, and early oocysts) in pseudotime using            
SLICER (39). We identified 1270 genes that were differentially expressed over pseudotime            
among the 393 cells included. (A) A heatmap of the mean expression of each cluster of                
differentially expressed genes over pseudotime with manual annotation shows fine-scale          
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patterns of expression over development. (B) PCA of stages represented by these cells. (C) The               
PCA coloured by their cluster assignments from SC3. Clusters three, four and five from were               
classified as ookinetes in further analysis, while clusters one and two were classified as oocysts               
based on expression of known marker genes. (D) The pseudotime ordering overlaid on the              
PCA. The pseudotime ordering matched both the different collection groups and the SC3             
clusters. (E) Expression of four genes over pseudotime. SOAP is an ookinete marker genes              
(54). Actin II is an oocyst marker gene (57). We found other genes such as cyclin-3 (58) and                  
PBANKA_1233200 expressed most highly at the transition between ookinete and oocyst           
stages. Cyclin-3 is known to be essential for oocyst development and we hypothesize that              
genes with a similar pattern of expression such as PBANKA_1233200 may be essential for the               
ookinete to oocyst transition.  
 
 
 
 
 

 
 
Fig. S5. Marker gene expression. 
Expression of known marker genes corresponded with isolation method and stage classification.            
(A) LISP1 (59) is highly expressed in liver stages. (B) MSP8 (60) is highly expressed in early                 
blood stage asexual parasites. (C) MSP1 (61) is highly expressed in late blood stage asexual               
parasites. (D) Dynein heavy chain (PBANKA_0416100) (62) is highly expressed in male            
gametocytes. (E) Pbs25 (55) is highly expressed in female gametocytes. (F) SOAP (54) is              
highly expressed in ookinetes. (G) Actin II (57) is highly expressed in oocysts. (H) UIS4 (63) was                 
highly expressed in sporozoites.  
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Fig. S6. Dual scRNA-seq of host and parasite transcriptomes during exo-erythrocytic           
schizogony. Transcriptomes were generated from HeLa cells containing mCherry liver stage           
parasites 44 h post infection and selected based on fluorescence (A) Proportions of reads              
mapping to either the host (H. sapiens) or the parasite (P. berghei) genomes. (B) Number of                
genes per cell identified in host and parasite transcriptomes. (C) PCA of parasite transcriptomes              
identifies a developmental progression of the liver stages that corresponds to a known marker of               
progressing exo-erythrocytic schizogony (MSP-1, PBANKA_0831000 (64)). (D) Force directed         
graph (65) of host transcriptomes, with different louvain clusters identified as different cell-cycle             
states. (E) Pseudotime analysis for both host and parasite transcriptomes were computed using             
SLICER (39) and plotted against one another showing no correlation of developmental state             
between the host cell and the parasite cell that resided in it. (F) Cell-cycle state of the host cell                   
also did not correspond to a particular pseudotime of the parasite indicating a decoupling              
between host cell-cycle state and parasite developmental progression.  
 

 
29 

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/527556doi: bioRxiv preprint 

https://paperpile.com/c/DQAFC1/OooQg
https://paperpile.com/c/DQAFC1/OooQg
https://paperpile.com/c/DQAFC1/OooQg
https://paperpile.com/c/DQAFC1/ItcY
https://paperpile.com/c/DQAFC1/ItcY
https://paperpile.com/c/DQAFC1/ItcY
https://paperpile.com/c/DQAFC1/BAMAx
https://paperpile.com/c/DQAFC1/BAMAx
https://paperpile.com/c/DQAFC1/BAMAx
https://doi.org/10.1101/527556
http://creativecommons.org/licenses/by/4.0/


 
Fig. S7. Conservation across kNN graph. (A) The kNN graph with non-orthologous (P.             
berghei to P. falciparum) genes highlighted in blue. (B) A barplot of the gene counts for each                 
cluster colored by orthology. Clusters 1, 7, 10, 17-20 were significantly enriched for genes that               
have no ortholog with P. falciparum (Fisher’s exact test, bonferroni p <0.001). Clusters 18, 19,               
and 20 were composed almost completely of genes from multigene families containing no             
orthologs in P. falciparum. 
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Fig. S8. Unique core expression genes by stage across the kNN graph. 
For each stage, a unique core set of genes fe was defined by identifying the genes for each                  
stage expressed in more than fifty percent of 60 randomly selected cells from that stage. Core                
genes unique to that stage were considered the ‘unique core’. These genes are highlighted for               
each stage in red on the kNN graph. We see a clear pattern of clustering for most stages (see                   
inset p-values) of unique core genes that matches the graph spectral clustering shown in Fig. 2.                
Enrichment of core unique genes was calculated for each cluster using a Fisher’s exact test.  
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Fig. S9. Expression of AP2 transcription factors across all cells in the data set.  
(A) A heatmap of log expression counts of 25 AP2 transcription factors across all cells in the                 
data set. Cells are ordered in a developmental trajectory based on life cycle order and               
pseudotime. (B) Heatmap of Pearson correlations between AP2 gene expression and gene            
clusters from Fig. 2. The column on the right shows the most significantly enriched motif in that                 
cluster with the corresponding e-value (see also file S1). We found that the most significant               
motif of cluster 15, which is highly expressed in the ookinete stage, matched the AP2-O motif                
([G/C]TTAGCTA in our analysis, [TC][AG]GC[TC][AG] in (66)). The AP2-O TF is essential for             
ookinete development and the gene is highly expressed in the preceding female stage (66).              
This validation suggests that our analysis can identify as-yet unknown TF binding motifs in              
Plasmodium. 
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Fig. S10. Multigene families show development-independent variable expression between         
cells in most life stages. (A) A heatmap shows which stages were enriched for variability in                
expression of each multigene family. Variable genes were identified in each stage using             
Smart-seq2 data and controlling for development by regressing out pseudotime in liver stage             
EEFs, merozoites, rings, trophozoites, schizonts, ookinetes and oocysts. The hypergeometric          
test was used to determine enrichment of each gene family amongst variable genes in each               
stage and the resulting p-values were adjusted using the False Discovery Rate (FDR). (B) Each               
heatmap shows the TMM-normalised expression levels of members of a gene family over the              
life cycle of P. berghei. The data were filtered to show only those genes with at least 10 read                   
counts in at least 10 cells. Genes were clustered based on their expression pattern. Genes               
found to vary in expression level between cells of the same stage independent of development               
are highlighted to the left of each heatmap. The presence of a turquoise square, for example,                
indicates that that gene was variably expressed between ookinetes. 
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Fig. S11. The pir gene family shows distinct patterns of expression and promoter             
architecture in several parts of the life cycle. (A) The heatmap shows the TMM-normalised              
expression levels of members of the pir gene family over the life cycle of P. berghei. The data                  
were filtered to show only those genes expressed with at least 10 read counts in at least 10                  
cells over the whole dataset. Genes were clustered based on their expression pattern. The              
presence of an orange square, for example, indicates that that gene was variably expressed              
between liver stage EEFs. The subfamily classification of each pir gene is indicated in red               
colours (L-type pir genes), blue colours (S-type pir genes) and green (ancestral pir gene) to the                
left of the heatmap. Families of sequence identified in the promoter regions of each gene are                
indicated with letters A-J. One cluster of pir genes variably expressed in both EEFs and               
trophozoites tended to have ‘F’ sequences in their promoters. Another cluster was variably             
expressed in male gametocytes and tended to have promoters with ‘A’ sequences. (B) This              
heatmap shows merozoites and rings and pir genes expressed with at least 10 read counts in at                 
least 10 of these cells. Both genes and cells were clustered based on their expression levels.                
Five pairs of genes show evidence of co-expression (Pearson r > 0.7). Each pair tended to have                 
high sequence identity (BLAST sequence identity > 95%), the same promoter architecture            
(identical pattern of upstream sequence families) with each member of a pair residing on              
different chromosomes. 
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Fig. S12. Comparison of Smart-seq2 data with 10X data and technical assessment 
(A) A ‘barnyard’ plot showing the doublet rate between the P. knowlesi and P. berghei mixed                
species experiment. (B) For each species, Top: a violin plot showing the number of genes               
detected per cell (nGene) with a line representing the QC threshold used; Middle: A violin plot                
showing the proportion of artificial nearest neighbors (pANN) as calculated by DoubletFinder            
(38), with cells split by their final assignment; Bottom: A tSNE plot showing doublets highlighted               
in green against singlets in grey, showing the distribution of doublets among stages. (C) PCA               
plot overlaying the Smart-seq2 to the 10X data using a CCA corrected distance matrix coloured               
by technology (left) and cluster (middle). The proportional representation of these clusters            
captured by each technology is displayed on the right. 
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Fig. S13. Correlation of 10X data sets with bulk expression data 
(A) PCA plots for each species, coloured by their predicted life cycle stage according to               
maximum correlation with the following bulk time course reference data sets: P. berghei             
microarray (21); P. falciparum RNA-seq (67); P. knowlesi microarray (68). (B) Distribution of             
cells according to predicted life cycle stage based on bulk data. The temporal density of               
sampling over the IDC is different between bulk data sets so this results in a different number of                  
bins for each species. (C) Violin plots showing the Pearson correlation coefficient, r, for each               
species by predicted life cycle stage. (D) PCA plots for each species, coloured by pseudotime               
value, calculated using the custom clock approach. (E) Density ridgeline plots showing the             
relationship between pseudotime and predicted life cycle stage.  
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Fig. S14. SCmap of 10X data 
(A) In order to identify male and female gametocytes, clustering of 10X data was initially done                
with the Seurat shared nearest neighbor modularity optimization method, which identified 26            
clusters, two of which corresponded to mature male and female gametocytes based on known              
markers. Cells are shown on a PCA and colored by cluster assignment. (B) SC3 clustering of                
blood-stage parasite data (rings, trophozoites, schizonts, and mature gametocytes). Cells were           
re-clustered in SC3 into eight clusters that were then used for the cluster assignment shown in                
Fig. 3A. (C) ‘Clock’ pseudotime was calculated independently for both P. falciparum (left) and P.               
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knowlesi (right) and the mean coordinates of the bulk prediction were mapped onto the PCA               
(black points). (D) The correspondence between the independent pseudotime calculation from           
(B) and the pseudotime of the assigned P. berghei cell based on scmap There was a strong                 
correlation between pseudotime for each species and the assigned cell pseudotime further            
supporting the cell assignments from scmap.  
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Fig. S15. Transcriptional rate varies across the IDC. (A) A heatmap showing the average              
scaled transcriptional rate of genes in P. berghei as measured by RNA velocity (19) in the IDC.                 
Genes are ordered and binned along the vertical axis by their peak time in P. falciparum in (20).                  
The top panel shows the scaled transcriptional rate of each cell over pseudotime in the P.                
berghei 10X data. The groups of genes from (20) also had high transcriptional rates at               
corresponding points in the life cycle in P. berghei based on RNA velocity. (B) RNA velocity of                 
the Smart-seq2 IDC cells. Cells were mapped to the 10X P. berghei reference index with               
scmap-cell to assign each cell a cluster and a pseudotime value allowing us to directly compare                
the two data sets. Cells are colored by their assigned cell cluster. The left plot is a PCA of the                    
548 Smart-seq2 IDC cells with the arrows representing the local average velocity. The right              
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panel displays the same cells over pseudotime showing the relative increase in transcription             
across all transcripts unscaled or scaled by gene, followed by the number of genes detected               
and the number of reads per gene in each cell over pseudotime. (C) The three species 10X data                  
sets over assigned cell pseudotime based on the P. berghei 10X reference index. Cells are               
colored by their assigned cell cluster. Each panel shows the relative increase in transcription              
(scaled and unscaled) as well the the number of genes detected and the number of UMIs per                 
gene. We observed a similar pattern of transcriptional dynamics in both the Smart-seq2 and              
10X P. berghei data. Additionally, the pattern of early stages having the highest transcriptional              
rate was seen across species, suggesting changes in transcriptional rates over the IDC are              
highly conserved.  
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Fig. S16. Deconvolution of bulk transcriptomic samples using scRNA-seq data. (A) A            
diagram of the P. berghei 10X data from fig. S14, which is used as a reference to call markers                   
for each cell cluster. (B) The Yeoh et al. study (22) used the 820cl1m1cl1 P. berghei parasite                 
line (69), which has RFP females and GFP males, to examine each sex separately by RNA-seq.                
Asexual samples were obtained straight from a mouse and only circulating forms are expected              
to be present. Using BSeq-SC (53) to estimate cell type proportions present in the bulk data,                
only circulating forms are observed in the asexual samples, as well as a majority of females in                 
the female samples, and a majority of males in the male samples. Additional cells called in the                 
gametocyte samples are hypothesised to be developing gametocytes, technical noise in our            
method, and/or true asexual cells that are present in the sorting gate. (C) We tested whether the                 
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P. berghei cell atlas could be used to deconvolve bulk RNA-seq data from P. falciparum               
samples collected from patients with uncomplicated or severe malaria (23). We find that the cell               
population in the bulk data is composed primarily of early stage circulating forms as expected               
(top). We also observe cell type composition is independent of the severity of malaria (bottom)               
as described by the authors in this study. The Malaria Cell Atlas provides a robust index by                 
which to deconvolve bulk transcriptomic data into contributing cell populations.  
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Fig. S17. Preservation and analysis of single cell transcriptomes from natural carriers of             
Plasmodium . (A) P. falciparum trophozoites and schizonts were preserved in 80% methanol            
and kept at different temperatures for varying amounts of time before analysis by Smart-seq2;              
this revealed that transcriptomes from methanol fixed parasites are of equivalent quality than             
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ones from RNALater fixed parasites. (B) We used our preservation protocol on parasites             
collected from naturally-infected carriers in Mbita Kenya and established that even after three             
weeks of preservation, high quality single cell transcriptomes were possible to retrieve using             
Smart-seq2. (C) PCA of 22 P. falciparum and 13 P. malariae wild single cell transcriptomes               
showing expression of known (P. falciparum (70)) or putative (P. malariae) male (HC-dynein),             
female (Pfs 25 and Pm28), early ring (EXP2), and putative late stage markers (MSP-1) (D)               
PCAs of the same cells as in (C) but with their scmap assignment based on the P. berghei 10X                   
Malaria Cell Atlas. Life stages can be assigned using known markers as demonstrated in (C)               
but to place cells in developmental time, the full atlas is required (see Fig. 4B for placement of                  
these cells). 
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