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Abstract
Background  Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar 
degeneration (PCD) – a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural 
antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in 
large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, 
multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the 
properties of the CDR proteins in ovarian cancer.

Methods  Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and 
mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the 
absence of these proteins.

Results  For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout 
cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused 
dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately 
causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript 
level and downregulation at the protein level.

Conclusions  Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR 
genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a 
valuable resource for future investigations into the CDR proteins.
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Introduction
Paraneoplastic neurological syndromes are rare, 
immune-mediated disorders triggered by cancer [1]. 
These syndromes are characterized by circulating anti-
bodies directed against antigens expressed by neurons 
and cancer cells. Paraneoplastic cerebellar degenera-
tion (PCD) is one of the most common forms of para-
neoplastic neurological syndromes [2, 3]. It presents with 
subacute onset of limb and truncal ataxia, dysarthria, 
and nystagmus [4]. In patients with PCD, the dominant 
autoantibody detected in serum and cerebrospinal fluid 
is anti-Yo which is most frequently seen in patients with 
breast, ovarian or other gynaecological cancers [2, 4]. 
Anti-Yo targets three intracellular antigens expressed by 
Purkinje neurons and cancer cells – the cerebellar degen-
eration-related (CDR) proteins CDR1, CDR2, and CDR2-
like (CDR2L) [5–8]. The interactions between anti-Yo 
and CDR proteins have been shown to cause Purkinje 
neuron death [9, 10].

We demonstrated recently that CDR2L is likely the 
major antigen of anti-Yo [11]. Increased expression of 
CDR2L mRNA has been observed in ovarian tumours 
from PCD patients with anti-Yo antibodies compared to 
ovarian tumours from patients without PCD or anti-Yo 
antibodies [12]. Due to our limited understanding of the 
biological functions of the CDR2L protein, the conse-
quences of this increased expression in tumours are not 
known. Previous studies showed that CDR2L localizes to 
the cell cytoplasm in association with membrane-bound 
and free ribosomes in both Purkinje neurons and can-
cer cells [13–15]. Further, we demonstrated that CDR2L 
interacts with several ribosomal proteins, suggesting a 
role in protein synthesis [15].

In the present study, we used a multi-omics approach 
to explore changes in the transcriptome, proteome, 
and secretome induced by knockout of CDR1, CDR2, 
and CDR2L in ovarian cancer cells. Since CDR2L is 

considered the major antigen in Yo-associated PCD, we 
characterized the effects of CDR2L knockout in detail. 
We found that loss of CDR2L had a distinct effect on the 
transcriptome and proteome compared to loss of CDR1 
or of CDR2. Following knockout of CDR2L, genes asso-
ciated with ribosome biogenesis, protein translation and 
cell cycle progression were downregulated, and cell pro-
liferation was impaired. This study provides an exten-
sive analysis of CDR-knockout cells and offers a valuable 
resource for future investigations into the CDR proteins.

Results
Knockout of genes encoding CDR proteins induces 
expression changes in the transcriptome, proteome, and 
secretome of ovarian cancer cells
Using differential expression analysis, we investigated 
changes induced by knockout of CDR1, CDR2, and 
CDR2L in the transcriptome, and the proteomes of cell 
lysate and conditioned cell medium. These three omics 
datasets were separately normalized and subjected to 
pre-filtering, resulting in 18,719 genes in the transcrip-
tomic dataset (Table S1): the majority of which were pro-
tein-coding (80.2%). There were 7,074 proteins in the cell 
lysate proteomics dataset (referred to as the proteome; 
Table S2) and 3,588 in the cell medium proteomics data-
set (referred to as the secretome; Table S3). Comparison 
of the transcriptomics and proteomics data revealed that 
6,881 (97.3%) and 3,470 (96.7%) proteins in the proteome 
and secretome datasets, respectively, were matched with 
protein-coding mRNAs (Fig. 1A). There were significant 
positive correlations between the transcriptome and pro-
teome (Spearman’s rank correlation coefficient across 
wild-type and knockout cell lines, ρ = 0.53, p-value < 2.2e-
16), between transcriptome and secretome (ρ = 0.38, 
p-value < 2.2e-16), and between proteome and secretome 
(ρ = 0.45, p-value < 2.2e-16; Figure S1).

Proteins present in the secretome include secreted 
proteins, proteins shed by membrane vesicles, and pro-
teins leaked from dying cells. To assess the sources of 
proteins identified in the secretome, we compared these 
proteins with proteins in the Plasma Proteome Database 
[16], which are reportedly present in the plasma and 
serum, and with those in the Vesiclepedia Database [17], 
which have been detected in extracellular vesicles. Of the 
3,588 proteins in the secretome, 55.8% were found in the 
Plasma Proteome Database and 86.3% were found in the 
Vesiclepedia database, suggesting that most of proteins in 
the secretome were derived from extracellular vesicles.

We performed differential expression analysis on each 
dataset comparing knockout cells to the wild-type (WT) 
cells, resulting in differentially expressed (DE) genes and 
proteins in the transcriptome, proteome, and secretome 
for each knockout cell line (Table 1). Effect sizes and sig-
nificance values are listed in Tables S4-S6. There were 

Table 1  Number of significantly differentially expressed genes 
(FDR < 0.05) in the transcriptome, proteome, and secretome of 
CDR-knockout cell lines versus wild-type cells

CDR2L CDR2 CDR1
Transcriptome
Downregulated 4035 (21.6%) 2272 (12.1%) 2672 (14.3%)
Not significant 10,593 (56.6%) 14,443 (77.2%) 13,110 (70.0%)
Upregulated 4091 (21.9%) 2004 (10.7%) 2937 (15.7%)
Proteome
Downregulated 1890 (26.7%) 1143 (16.2%) 1546 (21.9%)
Not significant 3922 (55.4%) 5256 (74.3%) 4462 (63.1%)
Upregulated 1262 (17.8%) 675 (9.5%) 1066 (15.1%)
Secretome
Downregulated 1651 (46.0%) 1949 (54.3%) 1365 (38.0%)
Not significant 1587 (44.2%) 1289 (35.9%) 1586 (44.2%)
Upregulated 350 (9.8%) 350 (9.8%) 637 (17.8%)
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more DE genes in the transcriptome in all group com-
parisons than in the proteome. Since mass spectrometry-
based proteomics is less sensitive than RNA sequencing, 
resulting in fewer detected proteins than genes, the lower 
number of DE genes in the proteome compared to the 
transcriptome was not unexpected. The proportion of 
genes that were DE was similar between the transcrip-
tome (mean proportion across all three knockout cell 
lines = 32.0%) and proteome (35.7%), whereas the secre-
tome had a much higher proportion of DE genes (58.5%) 
with more than half of secreted proteins affected by the 
knockout, irrespective of CDR protein (Fig. 1B).

Some genes were DE in all three knockout cell lines. 
These constituted 15.7% of DE genes in the transcriptome 
and 15.4% of DE proteins in the proteome (FDR < 0.05 in 
all three knockout analyses, where the intersection was 
performed irrespective of direction of change). In the 
secretome, this proportion was more than twice as high 
with 34.4% of DE genes common to the three knockout 
cell lines (Fig. 1C). Over-representation analysis on these 
common DE genes was performed to identify the biologi-
cal processes affected by the loss of any of the CDR genes 
(Table S7). In the transcriptome, cell adhesion, cell motil-
ity, extracellular structure organization, and negative 
regulation of nervous system development were among 
the enriched pathways. In the proteome, several meta-
bolic processes were enriched, including organic hydroxy 
compound metabolic process, steroid metabolic process, 
and fatty acid metabolic process. In the secretome, ribo-
somes, RNA catabolic process, and protein localization 
to endoplasmic reticulum were enriched.

Knockout of CDR2L results in a unique transcriptomic and 
proteomic expression profile
To understand the differential effect of the knockout, we 
compared the number of DE genes between the three 
knockout cell lines. In the transcriptome, 43.4% of genes 
were DE in CDR2L-knockout cells compared to 22.8% in 
CDR2- and 30.0% in CDR1-knockout cells (Fig.  1C). In 
line with the higher proportion of DE genes, CDR2L also 
showed the highest number of uniquely altered genes 
(i.e., not significantly DE in the other knockout cell lines) 
with 29.0% of genes in the transcriptome uniquely altered 
in the CDR2L-knockout cells (Fig.  1C). Similarly, in the 
proteome, 44.6% of genes were DE in CDR2L-knock-
out cells, with 27.3% of genes in the proteome uniquely 
altered in CDR2L-knockout cells. The high number of 
uniquely altered genes in CDR2L-knockout cells sug-
gests that loss of CDR2L has a distinct effect on the cells 
compared to loss of the other CDR proteins. In the sec-
retome, however, most DE genes were common to all 
knockout cell lines, with CDR2L-knockout cells having 
the lowest number of uniquely altered genes.

Using principal component analysis on the three omic 
datasets separately, we observed a clustering of samples 
into the respective knockout groups, confirming a good 
accordance between biological replicates. The CDR2L-
knockout cells were separated from the other cells, 
including WT, along the first principal component in the 
transcriptome and proteome but not in the secretome 
(Fig. 1D), further strengthening our hypothesis that loss 
of CDR2L has a unique effect inside the cell. We inves-
tigated this further using linear regression and found a 
significant association between the first principal compo-
nent (representing the main axis of variation in the data-
set) and the condition variable CDR2L versus the other 
cell lines for the transcriptome (p-value = 3.4e-04) and the 
proteome (p-value = 4.3e-08) but not for the secretome 
(p-value = 0.357). When comparing the 1000 genes with 
the highest absolute loadings in the first principal com-
ponent, only 5.5% were common between the transcrip-
tome and proteome, suggesting that the genes driving the 
separation between the CDR2L-knockout cell line and 
the other cell lines are different between the transcrip-
tome and proteome. Based on these findings, we decided 
to further characterize the likely unique intracellular 
expression profile of the CDR2L-knockout cells.

Gene set enrichment analysis reveals discordant changes 
in enriched pathways at transcript and protein level upon 
knockout of CDR2L
To better understand the biological functions of the 
genes with expression altered by knockout of CDR2L, we 
performed gene set enrichment analysis. There were both 
common pathways and pathways specifically enriched 
in the transcriptome, proteome, and secretome. At the 
transcript level, the most significantly upregulated path-
ways were related to ribosomes, DNA replication, and 
RNA processing (Fig. 2A and Table S8). The few down-
regulated pathways included cell adhesion and calcium 
binding (Fig. 2A and Table S8). In the proteome, down-
regulated pathways were mostly related to the cell cycle, 
RNA processing, and ribosome biogenesis, while upregu-
lated pathways were enriched for nucleoside metabolism, 
immune responses, homeostasis, and regulation of actin 
filaments (Fig.  2B and Table S8). Downregulated path-
ways in the secretome were mainly related to ribosomes, 
RNA processing, and amide biosynthesis, and upregu-
lated pathways were related to adhesion, proteoglycan 
metabolism, lysosomes, and synapse assembly (Fig.  2C 
and Table S8).

Interestingly, several of the pathways upregulated in 
the transcriptome were downregulated in the proteome 
and/or secretome (Fig. 2D): These pathways were related 
to RNA processing, DNA replication, and ribosome bio-
genesis. On the other hand, cell adhesion and calcium 
binding were downregulated in the transcriptome but 
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upregulated in the secretome. Enriched pathways in the 
proteome and secretome showed the same direction of 
change.

Ribosome biogenesis factors are dysregulated in the 
transcriptome and proteome of CDR2L-knockout cells, but 
in opposite directions
CDR2L has previously been shown to localize to ribo-
somes and interact with ribosomal proteins [15]. As gene 

set analysis of CDR2L-knockout cells showed enrichment 
of ribosome biogenesis at the transcriptome and pro-
teome level, we evaluated the expression of all genes with 
the GO term “ribosome biogenesis” significantly DE in at 
least one of the datasets (n = 206). In the transcriptome, 
the majority (80.4%) of DE mRNAs (n = 168) involved 
in ribosome biogenesis were upregulated, while in the 
proteome, the majority (84.2%) of DE proteins (n = 120) 
were downregulated. Eighty-one genes were DE in both 

Fig. 1  Comparison of changes induced by knockout of CDR1, CDR2, and CDR2L in the transcriptome, proteome, and secretome of ovarian cancer 
cells. (A) Venn diagram showing the number of genes identified in each dataset and the overlap between datasets. (B) The proportion of differentially 
expressed genes (y-axis) for each knockout cell line (colour) per dataset (x-axis). The percentage was calculated based on the number of genes in each 
pre-filtered dataset. (C) Upset plots where the rows correspond to the significantly (FDR < 0.05) differentially expressed genes in each knockout cell line, 
and the columns correspond to the intersecting genes in each dataset (panels). The orange bar highlights the number of differentially expressed genes 
common to all cell lines. The dark blue bar highlights differentially expressed genes unique to CDR2L-knockout cells. (D) Principal component plot. 
Datapoints represent samples in the first (x-axis) and second (y-axis) principal component space. Color-coding indicates group variable. Analysis was 
performed separately on each dataset (panels)
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transcriptome and proteome. Ribosome biogenesis is a 
complex process involving several highly orchestrated 
steps. To determine which steps were affected by the loss 
of CDR2L, we classified the genes according to a recent 
review of ribosome biogenesis factors [18]. In both the 
transcriptome and the proteome, most of the DE genes 
were associated with the small subunit processome, mat-
uration of the 60S subunit, and ribosomal RNA (rRNA) 
processing (Fig. 3). That the same steps of ribosome bio-
genesis are affected in both transcriptome and proteome, 
albeit in opposite directions, strengthens the hypothesis 
that CDR2L is intimately involved in ribosomal function.

Dysregulated ribosome biogenesis interferes with 
the assembly of functional ribosomes and consequently 
inhibits protein translation. Therefore, we investigated 

the expression of individual ribosomal proteins and 
eukaryotic initiation factors (eIFs) that are essential for 
initiation of translation. In the transcriptome of CDR2L-
knockout cells, genes encoding 39 ribosomal proteins 
were DE; of these 24 were downregulated. In the pro-
teome and secretome, 37 and 53 ribosomal proteins 
were DE, respectively, of which all were downregulated. 
We also observed dysregulation of eIFs. A number were 
upregulated in the transcriptome, including EIF3B, 
EIF4A3, EIF5A, EIF5B, and EIF6, while EIF4G3, EIF4B, 
and EIF3K were downregulated. In the proteome, eIFs 
EIF1, EIF3L, EIF4B and EIF4G3 were downregulated. In 
the secretome, all DE eIFs were downregulated. These 
changes suggests that loss of CDR2L disrupts protein 
synthesis in the cells.

Fig. 2  Gene set enrichment analysis of mRNAs and proteins with expression altered by CDR2L knockout. A-C, The top 30 (sorted by significance) up- and 
downregulated GO and KEGG gene sets in (A) transcriptome, (B) proteome, and (C) secretome of CDR2L-knockout cells. The gene sets were collapsed to 
reduce redundancy in the results. The horizontal axis represents the positive (orange) and negative (blue) normalized enrichment scores. The transpar-
ency of the bars reflects significance (at FDR < 0.05). (D) Heatmap of enriched pathways common to at least two datasets. The columns correspond to 
enriched GO and KEGG pathways, rows correspond to omic datasets. The colour and transparency of each cell represents the direction of the normalized 
enrichment scores (NES) and the significance, respectively
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Fig. 3  Ribosome biogenesis factors are affected differently in the transcriptome and proteome of CDR2L- knockout cells. Heatmap of differentially ex-
pressed genes from the GO term “ribosome biogenesis” detected in the transcriptome and proteome of CDR2L-knockout cells. The columns correspond 
to the datasets, and the rows correspond to individual genes. The colour of each cell represents the direction of the log2 fold change. The annotations 
on the left side of the heatmap describe whether the gene is significantly differently expressed, and the annotations on the right side indicate the step in 
the ribosome biogenesis pathway with which the gene is associated
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Knockout of CDR2L causes downregulation of key 
regulators of the cell cycle
Gene set enrichment analysis of CDR2L-knockout cells 
resulted in more enriched pathways for the proteome 
(n = 325) than for the transcriptome (n = 61) or secretome 
(n = 139). The large number of pathways in the proteome 
rendered interpretation difficult. Therefore, we created a 
term network to investigate the functional relationships 
between these pathways. Most of the identified func-
tional groups were related to the cell cycle, including cell 
cycle phase transition, mitotic spindle organization, chro-
matid segregation, and nuclear division (Fig. 4A). Other 
enriched pathways were related to rRNA processing and 
nucleoside metabolism – processes that are tightly con-
nected to the cell cycle. Pathways related to the cell cycle 
and rRNA processing were all downregulated, whereas 
pathways related to nucleoside metabolism were upregu-
lated in cells lacking CDR2L.

In relation to this finding, analysis of individual genes 
showed that knockout of CDR2L caused altered expres-
sion of multiple important regulators of the cell cycle 
in the proteome and/or transcriptome, including genes 
encoding Aurora kinases AURKA and AURKB, check-
point regulators (BUB1, BUB1B, CHEK1, and RB1), 
cyclins (CCNA2, CCNB1, and CCNB2), cyclin-depen-
dent kinases (CDK2, CDK4, and CDK6), cell division 
cycle proteins (CDC7, CDC20, CDC23, and CDC27), 
and cyclin-dependent kinase inhibitors (CDKN1A, 
CDKN1B, and CDKN2A). Other dysregulated proteins 
included components of the minichromosome mainte-
nance protein complex, which is essential for DNA rep-
lication (MCM2, MCM3, MCM4, MCM5, and MCM7), 
subunits of the condensin complex, which plays a central 
role in chromosome condensation (NCAPD2, NCAPD3, 
NCAPG, NCAPG2, and NCAPH), centromere proteins, 
which are involved in chromosome segregation (CENPE, 
CENPF, CENPM, and CENPU), and several transcrip-
tion factors (E2F, FOS, JUN, and MYC). Similar to ribo-
some biogenesis factors, several of the cell cycle-related 
genes were upregulated in the transcriptome but down-
regulated in the proteome (Fig.  4B). Proapoptotic fac-
tors and key mediators of apoptosis like BAD, BAX, BID, 
and PYCARD were upregulated in the CDR2L-knockout 
proteome. Taken together, these data suggest that loss of 
CDR2L suppresses cell cycle progression in ovarian can-
cer, which may trigger apoptosis.

Utilizing transcription factor enrichment analysis to 
identify the likely contribution of transcription factors 
to the changes in the transcriptome following loss of 
CDR2L, we identified several transcription factors which 
regulate the cell cycle and proliferation (Table S9). These 
included MYC, ERF, PA2G4, and subunits of the AP-1 
transcription factor (FOSL1, FOSL2, and JUN) which 
regulate AURKB, BAX and several eIFs, among others, 

and members and interaction partners of the E2F family 
of transcription factors (E2F1, E2F4, E2F7, and TFDP1) 
which regulate CDK4 and CDK6. FOSL1 showed a par-
ticularly large upregulation in the transcriptome (log2 
fold change = 4.4).

CDR2L interacts with ribosome biogenesis factors and 
regulators of the cell cycle
In our earlier study, we used co-immunoprecipitation 
coupled with mass spectrometry to identify potential 
interaction partners of CDR2L in OVCAR-3 cells [15]. In 
light of our current findings, we re-examined our unpub-
lished results and found that several of the dysregulated 
ribosome biogenesis factors were among the identi-
fied interaction partners of CDR2L including HEATR1, 
GTPBP4, PA2G4, PDCD11, SBDS, and UTP20, nucleolar 
proteins (NOP56 and NOP58), RNA helicases (DDX17, 
DDX21, DDX3X, and DHX29), and WD repeat-contain-
ing proteins (WDR18, WDR36, and WDR43). Several 
eIFs (e.g., EIF4G2, EIF2A, EIF3L, EIF6), cyclin-depen-
dent kinases (CDK4 and CDK6), and components of the 
minichromosome maintenance protein complex (MCM2, 
MCM3, MCM4, MCM5, and MCM7) were also identi-
fied as potential interaction partners of CDR2L (Table 
S10). This strengthens the relationship between CDR2L 
and important regulators of ribosome biogenesis, protein 
synthesis and cell cycle progression.

Ribosome-associated genes are key hubs in the network of 
genes differentially expressed in both transcriptome and 
proteome of CDR2L-knockout cells
We identified 1958 genes that were altered in both the 
transcriptome and the proteome of the CDR2L-knockout 
cells (Fig.  5A). Although most of these genes showed a 
consistent pattern of regulation, that is they were upreg-
ulated or downregulated in both datasets, 31.2% of the 
genes were oppositely altered in the transcriptome versus 
the proteome (Fig. 5B). This proportion was twice as high 
in the CDR2L-knockout cells as in the other CDR-knock-
out cells (Figure S2).

The genes with altered expression in both transcrip-
tome and proteome of CDR2L-knockout cells were used 
to create a protein-protein interaction network using 
the STRING database. It consisted of a total 1958 nodes 
and 2745 edges. The genes in the network were enriched 
for many essential cellular processes including organelle 
organization, cell cycle and cell division, ribonucleopro-
tein complex biogenesis, gene expression, and intracel-
lular transport (Table S11). By ranking the genes using 
the maximal clique centrality algorithm (see methods), 
we identified key hub genes with high connectivity within 
the network. The top 10 hub genes were all ribosome-
associated genes including small ribosomal subunit pro-
teins (RPS7 and RPS9), components of the small subunit 
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Fig. 5  Comparison and correlational analysis between the transcriptome and proteome of CDR2L-knockout cells. (A) Venn diagram showing the num-
ber of shared and unique differentially expressed genes between the transcriptome and proteome of CDR2L-knockout cells. (B) Scatter plot showing 
log2 fold change of all genes significantly differentially expressed (FDR < 0.05) in both transcriptome (x-axis) and proteome (y-axis; n = 1958). The colour 
represents the four groups of possible combinations of direction of change. Correlation between log2 fold changes in transcriptome and proteome was 
assessed using Spearman’s rank correlation

 

Fig. 4  Knockout of CDR2L affects cell cycle-related pathways. (A) GO terms from the gene set enrichment analysis of the proteome of CDR2L-knockout 
cells visualized as a functionally organized network. Node colours represent grouped pathway terms. Group titles were chosen by selecting the most 
significant term in that group. Node shape represents the database source: circle, GO biological process; hexagon, GO molecular function; and square, GO 
cellular component. Significance of each pathway is reflected by the node size, with a larger shape representing a higher significance. Term-term interac-
tions are shown as edges in the network where the thickness of the edge represents the extent of overlap. Only groups with more than two nodes are 
shown. (B) Heatmap of selected cell cycle-related genes significantly differentially expressed (FDR < 0.05) in both transcriptome and proteome of CDR2L-
knockout cells. The columns correspond to the datasets, and the rows correspond to individual genes. The colour of each cell represents the direction of 
the log2 fold change. CDKs, cyclin-dependent kinases; CDKIs, cyclin-dependent kinase inhibitors; MCM, minichromosome maintenance
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processome (UTP4, UTP11, UTP20, HEATR1, WDR46, 
NOP56, and KRR1), and a nucleolar complex protein 
(NOC4L), again highlighting the effect of CDR2L knock-
out on ribosomal pathways and their interaction partners 
both at transcript and protein levels.

Next, to identify clusters of tightly connected genes 
within the network, we performed Markov clustering 
analysis followed by enrichment analysis of the genes in 
the clusters. Three of the clusters showed enrichment 
for pathways related to ribosome biogenesis, RNA pro-
cessing and translation: clusters 1, 3, and 4 (Fig. 6). The 
largest cluster (cluster 1) contained several components 
of the small subunit processome (UTP4, UTP11, UTP20, 
UTP25, NOC4L, NOP56, KRR1, and WDR46), RNA 
helicases (DDX47 and DHX37), translation initiation 

factor 3 subunits (EIF3I, EIF3G, EIF3C, and EIF3L), and 
small ribosomal subunit proteins (RPSA, RPS4X, RPS5, 
RPS9, RPS11, RPS16, and RPS23). Other clusters were 
distinctly enriched for mitochondrial pathways. Cluster 
2 contained several subunits of complex 1 of the mito-
chondrial respiratory chain, which were downregulated 
in both transcriptome and proteome. Cluster 5 con-
tained several mitochondrial ribosomal proteins, which 
were mostly upregulated in both datasets. Cluster 7 was 
enriched for protein folding. Taken together, these data 
indicate that loss of CDR2L results in dysregulation of 
protein synthesis and mitochondrial function.

Fig. 6  Protein-protein interaction networks of genes altered in both transcriptome and proteome of CDR2L-knockout cells. Genes significantly differen-
tially expressed (FDR < 0.05) in both the transcriptome and proteome of CDR2L-knockout cells were used to create a protein-protein interaction network 
in STRING. The network was subsequently clustered using Markov clustering to identify clusters of tightly connected genes. Each node represents a gene, 
and the colour indicates down- (blue) or upregulation (red). Inner rings represent transcriptome data and outer rings represent proteome data. Clusters 
with > = 10 nodes are shown along with their most significant enriched GO biological process terms (FDR < 0.05)
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CDR2L knockout suppressed proliferation of ovarian 
cancer cells
To study the effect of CDR2L knockout on proliferation 
rates in vitro, we performed live cell imaging of WT cells 
and CDR2L-knockout cells. The WT cells reached 90% 
confluence after approximately 40  h, whereas CDR2L-
knockout cells did not reach the same level of confluence 
until after approximately 65 h (Fig. 7). This demonstrates 
that CDR2L knockout markedly impaired cell prolifera-
tion in OVCAR-3 cells.

Discussion
The pathological mechanisms underlying PCD are largely 
unknown. Tumour expression and genetic alterations of 
the CDR proteins, particularly CDR2L, is thought to trig-
ger an immune response which targets both the cancer 
cells and the Purkinje neurons endogenously express-
ing the CDR proteins [19]. However, the mechanisms of 
immune activation and neural injury induced by these 
intracellular neural proteins remain unknown. This is in 
part due to our limited understanding of the biological 
properties of the CDR proteins. Here, we used transcrip-
tomics and proteomics to evaluate the effects of CRISPR/
Cas9-mediated knockout of CDR-encoding genes in 
ovarian cancer cells. As the CDR2L protein is likely to 
be the major target of the onconeural anti-Yo antibody in 
PCD [11], we performed an in-depth characterization of 
the CDR2L-knockout cells. Previously, we demonstrated 

that CDR2L colocalizes with ribosomes in ovarian cancer 
cells and Purkinje neurons [15]. Here, we show that loss 
of CDR2L causes dysregulation of ribosome biogenesis 
and reduces cell proliferation.

Changes in mRNA levels are generally assumed to be 
reflected by similar changes in the abundances of the 
corresponding proteins [20]. However, we found only 
a moderate correlation between protein abundances 
and mRNA levels, in line with previous studies [21, 22]. 
Therefore, integrating transcriptomic data with pro-
teomic data provided us with a more comprehensive view 
of the cellular changes induced by knockout of CDR2L. 
Interestingly, we found that nearly one third of genes 
with expression altered at both transcriptomic and pro-
teomic levels showed opposite trends of regulation, with 
the majority upregulated in the transcriptome and down-
regulated in the proteome. The proportion of DE genes 
with opposite regulation was twice as high in the CDR2L-
knockout cells as in the other knockout cells, suggesting 
that CDR2L specifically affects the balance of mRNAs 
and proteins in the cell. Multiple processes contribute 
to this balance, including modulation of the translation 
rate by RNA-binding proteins, degradation of transcripts 
through binding of microRNAs, protein degradation 
through the ubiquitin-proteasome pathway or autophagy, 
temporal delay of protein synthesis, and availability of 
ribosomes in controlling the abundance of proteins [23]. 
Our work confirms that transcript abundance is not the 

Fig. 7  Analysis of WT and CDR2L-knockout ovarian cancer cell proliferation in vitro. The proliferation rate of wild-type (WT) OVCAR-3 cells and CDR2L-
knockout cells was evaluated by live cell imaging. Plotted is the time in hours (x-axis) versus confluency calculated as a percentage of the surface of the 
imaged wells (y-axis). The data is presented as means with standard errors
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only determinant of protein abundance, and highlights 
the importance of post-transcriptional, translational, and 
degradation regulation in controlling the abundance of 
proteins.

Early studies using serum-derived antibodies from 
PCD patients localized the Yo antigen to ribosomes and 
rough endoplasmic reticulum [13, 14], thereby provid-
ing the first indications that CDR2L, the major antigen 
of anti-Yo antibodies [11], was a regulator of protein syn-
thesis. Using both Yo antibodies and commercial CDR2L 
antibodies, we confirmed the localization of CDR2L to 
ribosomes and identified the ribosomal protein RPS6 as a 
potential interaction partner of CDR2L [15]. In the pres-
ent study, we found that knockout of CDR2L caused dys-
regulation of expression of multiple ribosome biogenesis 
factors, RNA processing factors, ribosomal proteins, and 
eukaryotic translation initiation factors. The majority of 
these were upregulated in the transcriptome and down-
regulated in the proteome and secretome. Downregula-
tion of ribosome biogenesis factors, ribosomal proteins, 
and translation initiation factors should lead to reduced 
protein synthesis, with global effects favouring decreased 
protein abundances. In CDR2L-knockout cells, we identi-
fied similar numbers of increased and decreased mRNAs, 
but 1.5-fold more downregulated than upregulated 
proteins.

Upregulation of mRNAs involved in ribosome biogen-
esis, rRNA processing, and protein translation could be a 
consequence of attempts by cells to compensate for loss 
of ribosomal function and reduced protein synthesis. In 
support of this hypothesis, Myc, a proto-oncogenic tran-
scription factor and an important regulator of ribosome 
biogenesis and cell proliferation [24], was upregulated 
in the transcriptome of CDR2L-knockout cells. Interest-
ingly, previous studies have shown that CDR2 and c-Myc 
interact to synergistically regulate c-Myc-dependent 
transcription during passage through mitosis, and CDR2 
was found to interact with and downregulate c-Myc func-
tion [25, 26]. As PCD sera blocked this interaction, it was 
suggested that increased c-Myc activity could contribute 
to the degeneration of Purkinje neurons seen in PCD. 
As these studies used a combination of antibodies from 
PCD patients and commercial anti-CDR2 antibodies, it is 
possible that some of these findings can be attributed to 
CDR2L. Further investigations into the CDR2L-Myc rela-
tionship are therefore warranted.

Several ribosome biogenesis factors, ribosomal pro-
teins, and eukaryotic translation initiation factors were 
identified in the secretome of the OVCAR-3 cells, many 
of which were downregulated in the CDR2L-knockout 
cells. Although generally considered intracellular pro-
teins, these can be found in extracellular vesicles (EVs) 
[27]. Ribosomal proteins are selectively incorporated into 
EVs and released from both normal and malignant cells 

[28]. The amounts and types of ribosomal proteins in EVs 
are altered under pathological conditions. For example, 
Dabbah et al. reported increased levels and repertoire of 
ribosomal proteins in EVs from mesenchymal stem cells 
in multiple myeloma compared with EVs from healthy 
controls [29]. These EVs were internalized by neighbour-
ing cells and promoted their proliferation – a processes 
that was dependent on the ribosomal content of the 
EVs. The dysregulated ribosome biogenesis in CDR2L-
knockout cells may therefore not only disrupt the activity 
of intracellular ribosomes but may also affect the levels 
and repertoire of ribosomal proteins released from cells 
in EVs, which in turn may affect the behaviour of neigh-
bouring cells.

Ribosome biogenesis influences the cell cycle as it 
regulates cell size and growth. Disruption of ribosome 
biogenesis causes ribosomal stress, which results in 
p53-dependent cell cycle arrest and apoptosis [30]. In the 
present study, we showed that multiple pathways related 
to the cell cycle were downregulated in CDR2L-knock-
out cells. Important regulators of the cell cycle, such as 
cyclins (CCNA2, CCNB1, and CCNB2), cyclin-depen-
dent kinases (CDK2, CDK4, and CDK6), and checkpoint 
regulators (BUB1, BUB1B, and CHEK1), were downregu-
lated, whereas proapoptotic factors (BAD, BAX, and BID) 
were upregulated. CDK6, which together with CDK4 and 
cyclin D facilitate the progression of cells through the 
early G1 phase of the cell cycle [31], was highly down-
regulated (log2 fold change = -3.5). In line with down-
regulation of cell cycle proteins, knockout of CDR2L 
impaired cell proliferation in vitro. Similarly, reduction 
of levels of the ribosomal protein RPS6 in ovarian can-
cer cells caused downregulation of CDK2, CDK4, CDK6, 
cyclin E, and cyclin D1, thereby blocking the transition 
from G0/G1 to S phase and suppressing cell proliferation 
[32]. Previously, we showed that CDR2L interacts with 
RPS6 [15]. The observation that loss of either CDR2L or 
RPS6 causes similar effects on the cell cycle in ovarian 
cancer cells further supports an association between the 
two proteins. However, the effect of knockout of CDR2L 
on the cell cycle seems to be independent of changes in 
RPS6 expression as RPS6 was not differentially expressed 
following the knockout. Rather, knockout of CDR2L may 
alter the function of RPS6 or disrupt common down-
stream signalling events.

The current study provides an extensive bioinformatic 
analysis of the effect of CDR-knockout which can serve 
as a valuable resource for designing future experiments 
to determine the biological properties of the CDR pro-
teins. For example, the effect on the cell cycle should be 
further explored using flow cytometry which would pro-
vide insight into which phases of the cell cycle is affected 
by the absence of the CDR2L protein. Rescue experi-
ments in which CDR2L is re-expressed would provide 
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further validation of the observed knockout phenotype. 
Comparative studies with all CDR-knockout cells would 
determine whether the effect on the cell cycle is unique 
to CDR2L, or whether it is a shared effect among the 
CDR proteins. Further, an orthotopic xenograft model 
could be used to explore the effects of CDR-knockout on 
the tumorigenic potential of ovarian cancer cells, includ-
ing assessment of tumour growth rate and metastasis.

Conclusions
In conclusion, we found that knockout of CDR2L in an 
ovarian cancer line dysregulates genes involved in ribo-
some biogenesis, protein synthesis and cell cycle-related 
processes, ultimately impairing cell proliferation. Yo anti-
bodies from PCD patients are internalized by Purkinje 
neurons where they bind to CDR2L [9, 11]. Whether 
binding of anti-Yo to CDR2L interferes with CDR2L and 
thereby disrupts ribosome homeostasis or protein syn-
thesis in Purkinje neurons remains to be explored. Defi-
cits in ribosome biogenesis in neurons have been shown 
to cause dendritic degeneration and loss of synaptic plas-
ticity [33]. The data provided by this study serves as a 
valuable resource for exploring the biological properties 
of the CDR proteins.

Materials and methods
Generation of knockout OVCAR-3 cells
CDR1-knockout, CDR2-knockout, and CDR2L-knockout 
OVCAR-3 cell lines and WT (#YC-D019) cells were pro-
vided by Ubigene Biosciences Co., Ltd. The single guide 
RNAs (sgRNAs) were designed using the online CRISPR 
design tool (https://en.rc-crispr.com/). The pair of oligo-
nucleotides corresponding to each sgRNA were annealed 
and ligated into the YKO-RP003 vector (Ubigene Bio-
sciences Co., Ltd.). The YKO-RP003-[sgRNA] plasmids 
were transfected into cells with Lipofectamine 3000 
(Thermo Fisher Scientific). At 24–48 h after the transfec-
tion, puromycin was added. After antibiotic selection, 
cells were diluted by limited dilution methods and inoc-
ulated into 96-well plate. Selection of single clones was 
performed after 2–4 weeks, and knockout was validated 
by polymerase chain reaction and Sanger sequencing.

Cell culture
OVCAR-3 cells were cultured in RPMI 1640 medium 
supplemented with 20% fetal bovine serum (Thermo 
Fisher Scientific) and 1% penicillin/streptomycin 
(Thermo Fisher Scientific) in a humidified atmosphere 
with 5% CO2 at 37  °C. Cells were used for experiments 
within 10 passages of thawing. Cells were routinely tested 
for mycoplasma (MycoAlert PLUS Mycoplasma Detec-
tion Kit).

Cell proliferation assay
WT and CDR2L-knockout OVCAR-3 cells were seeded 
at 10,000 cells/well in Incucyte Imagelock 96-well plates 
(Sartorius). Following cell seeding, plates were placed 
in an Incucyte live-cell analysis system (Sartorius) and 
imaged every 2 h for 96 h. The rate of cell proliferation 
was determined based on changes in confluency of each 
imaged well. Analysis was performed using the Incucyte 
S3 software (Sartorius). The experiment was repeated 
three times with similar results.

RNA sequencing
Total RNA was extracted from all four cell lines in bio-
logical triplicates using miRNeasy Tissue/Cells Advanced 
(Qiagen) according to the manufacturer’s protocol. 
Library preparation and sequencing was performed by 
BGI Genomics (https://www.bgi.com/global/). Briefly, 
RNA quality and concentration was assessed using the 
Agilent 2100 Bioanalyzer. mRNA was enriched using 
oligo (dT)-functionalized magnetic beads, fragmented, 
converted to double-stranded cDNA, and amplified 
using PCR. Samples were sequenced through combinato-
rial probe-anchor synthesis on the DNBSEQ sequencing 
system using paired-end 100-bp sequencing. Raw reads 
were filtered using SOAPnuke version 2.1.3. Reads con-
taining the adaptor, reads with N content greater than 
5%, and low-quality reads were removed.

RNA expression quantification
Salmon version 1.10.2 [34] was used to quantify the 
abundance at the transcript level against the Ensembl 
release 75 transcriptome. Transcript-level quantification 
was collapsed onto gene-level quantification using the 
tximport R package version 1.26.1 [35]. Genes with zero 
counts and zero variance, genes without gene symbol, 
and mitochondria-encoded genes were excluded. Lowly 
expressed genes were excluded by only retaining genes 
where the counts across samples in the 80th percentile 
were greater than 0.1 counts per million. Differential gene 
expression analysis was performed using the DESeq2 R 
package version 1.32.2 [36] with default parameters. Mul-
tiple hypothesis testing was performed with the default 
automatic filtering of DESeq2 followed by FDR calcula-
tion by the Benjamini-Hochberg procedure.

Liquid chromatography and mass spectrometry analysis
Whole cell lysate and conditioned cell media (CCM) was 
prepared from all four cell lines in biological triplicates 
and analyzed by mass spectrometry-based proteomics. 
Cells were lysed with RIPA lysis buffer (G-Biosciences) 
supplemented with protease inhibitors (Thermo Fisher 
Scientific) on ice for 15  min. Protein lysates were col-
lected by centrifugation at 14,000 x g for 15 min at 4 °C. 
Protein concentration was measured with the BCA assay 

https://en.rc-crispr.com/
https://www.bgi.com/global/
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(Thermo Fisher Scientific). For CCM, cells cultured in 
T175 flasks (Corning) were incubated with media with-
out any additives for 24  h. The CCM was collected, 
centrifuged at 3000 x g for 15  min and filtered through 
a 0.2-µm syringe filter (Thermo Fisher Scientific). The 
CCM was concentrated using Ultra-15 3-kD cut-off cen-
trifugal filters (Millipore) and centrifugation at 3000 x g 
for 1 h.

The samples were mixed with paramagnetic beads 
(Sera-Mag Speed beads, GE Healthcare) in a 1:10 ratio. 
A 100% ethanol to 70% ethanol solution was added to the 
peptide-bead mixture, followed by agitation at 1000 rpm 
for 7 min at room temperature. The beads were washed 
twice in 80% ethanol to remove the lysis buffer, and 50 µl 
digestion buffer containing 100 mM AmBic, 1 mM CaCl2, 
and 0.2 µg/µl trypsin was added to each sample, followed 
by sonication for 30 s. Samples were incubated for 16 h 
at 37 °C in a thermomixer at 1,000 rpm. After digestion, 
the samples were centrifuged at 13,000 rpm at 24 °C for 
3  min. Following magnetic separation, the supernatants 
were transferred to a fresh tube. NaCl (0.5 M) was added 
to the magnetic beads, the sample was sonicated for 30 s 
and centrifuged a second time at 13,000 rpm at 24 °C for 
3 min. The supernatants of these tubes were added to the 
tubes with the previous supernatant. Trifluoroacetic acid 
(TFA, 0.1%, 200 µl) was added to each sample.

Oasis 96-well cartridges (Waters) were used for desalt-
ing. Cartridges were activated by adding 500  µl of 80% 
acetonitrile (ACN), 0.1% formic acid (FA) and cen-
trifuged at 200 x g for 1  min. The cartridges were then 
washed three times with 0.1% TFA. After adding the 
samples, the cartridges were centrifuged at 100 x g for 
3  min. The flow through was discarded, and cartridges 
were washed twice with 0.1% TFA followed by a short 
centrifugation. Samples were eluted with 100  µl of 80% 
ACN, 0.1% FA. The samples were freeze dried prior to 
tandem mass tag labelling.

Approximately 0.5  µg protein as tryptic peptides dis-
solved in 2% ACN and 0.5% FA, were injected into an 
Ultimate 3000 RSLC system (Thermo Fisher Scientific) 
connected online to Orbitrap Eclipse mass spectrometer 
(Thermo Fisher Scientific) equipped with EASY-spray 
nano-electrospray ion source (Thermo Fisher Scien-
tific). For trapping and desalting process, the samples 
were loaded and desalted on a pre-column (Acclaim 
PepMap 100, 2  cm × 75  μm ID nanoViper column, 
packed with 3 μm C18 beads) at a flow rate of 5 µl/min 
for 5  min with 0.1% TFA. Peptides were separated dur-
ing a biphasic ACN gradient from two nanoflow UPLC 
pumps (flow rate of 250 nl/min) on a 25-cm analytical 
column (PepMap RSLC, 50 cm × 75 μm ID EASY-Spray 
column, packed with 2-µm C18 beads). Solvent A and B 
were 0.1% FA (vol/vol) in distilled H2O and 100% ACN, 
respectively. The gradient composition was 5% B during 

trapping (5 min) followed by 5–7% B over 30 s, 8–22% B 
for the next 145 min, 22–28% B over 16 min, and 35–80% 
B over 15  min. Elution of very hydrophobic peptides 
and conditioning of the column were performed during 
a 15 min isocratic elution with 90% B and a 20 min iso-
cratic elution with 5% B, respectively. The peptides eluted 
from the LC-column were ionized in the electrospray and 
analyzed by the Orbitrap Eclipse. The mass spectrometer 
was operated in the data-dependent-acquisition mode to 
automatically switch between full scan MS and MS/MS 
acquisition. Instrument control was through Tune 2.7.0 
and Xcalibur 4.4.16.14.

Survey full-scan MS spectra (from m/z 375 to 1500) 
were acquired in the Orbitrap with resolution R = 120,000 
at m/z 200 after accumulation to a target value of 4e5 in 
the C-trap, ion accumulation time was set as auto. FAIMS 
was enabled using two compensation voltages (CVs), 
-45 V and − 65 V respectively. During each CV, the mass 
spectrometer was operated in data-dependent-acquisi-
tion mode to automatically switch between full scan MS 
and MS/MS acquisition. The cycle time was maintained 
at 0.9 s/CV. The most intense peptides with charge states 
2 to 6 were sequentially isolated to a target value (AGC) 
of 2e5 and maximum IT of 120 ms in the C-trap, and iso-
lation width maintained at 0.7  m/z. Fragmentation was 
performed with a normalized collision energy of 30%, 
and fragments were detected in the Orbitrap at a resolu-
tion of 30,000 at m/z 200, with first mass fixed at m/z 110. 
The spray and ion-source parameters were as follows: ion 
spray voltage = 1900 V, no sheath and auxiliary gas flow, 
and capillary temperature of 275  °C. The raw files were 
analyzed using Proteome Discoverer 2.4 (Thermo Fisher 
Scientific). Spectra were matched against the Homo sapi-
ens database obtained from UniProt. The final protein 
intensity files were exported as txt files and used for dif-
ferential expression analysis.

Protein expression quantification
Protein intensity txt files were analyzed for differentially 
expressed proteins using R version 4.2.2. First, proteins 
labelled as “Contaminant” by Proteome Discoverer were 
removed from the analysis. Second, to be included for 
downstream analysis, proteins were required to have 
non-zero intensity in all replicates in at least one experi-
mental group. The filtered proteomic dataset was com-
posed of 7447 proteins. Missing values (n = 1830) were 
imputed using the missForest function from the missFor-
est R package version 1.5 [37], which applies a random 
forest imputation algorithm shown to perform well with 
proteomics data [38]. Additionally, we removed proteins 
with a median abundance value less than the 5th percen-
tile. To test for differential expression we used the lmFit 
and eBayes functions from the limma R package version 
3.54.1 [39].
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Pathway enrichment analysis
Gene set enrichment analysis was performed using the 
fgsea R package version 1.24.0 [40]. The specific param-
eters used are documented in the code for the analysis. 
Gene sets derived from the GO [41] and the KEGG [42] 
databases were downloaded from the Molecular Sig-
natures Database [43]. Gene sets with an FDR adjusted 
p-value < 0.05 were considered significant. Over-repre-
sentation analysis of differentially expressed genes and 
proteins was performed using the WebGestaltR R pack-
age version 0.4.4 [44], with GO and KEGG gene sets. 
Gene sets with an FDR adjusted p-value < 0.05 were con-
sidered significant.

Protein-protein interaction network
The protein-protein interaction network was generated 
based on the interactions derived from the STRING 
database using the Cytoscape STRING app version 2.0.1 
[45] with a strict confidence score cutoff of 0.8 and net-
work type set to “physical subnetwork”. The network was 
visualized using Cytoscape version 3.9.1 [46], and nodes 
in the network were coloured according to their log2 
fold change using the Omics Visualizer app version 1.3.0 
[47]. Key hub genes were identified using the maximal 
clique centrality algorithm in the CytoHubba app version 
0.1 [48]. To cluster the network based on their interac-
tions from STRING, we used the clusterMaker2 version 
2.3.4 [49] and performed Markov clustering with default 
parameters. Enrichment analysis of the genes in the clus-
ters was performed using the Cytoscape STRING app. 
Gene sets with an FDR adjusted p-value < 0.05 were con-
sidered significant.

Pathway term network
Enriched pathways were grouped into functionally orga-
nized networks using ClueGO version 2.5.10 [50] and 
Cluepedia version 1.5.10 [51]. The networks were visual-
ized using Cytoscape.

Transcription factor enrichment analysis
Transcription factor enrichment analysis was per-
formed by analyzing the differentially expressed mRNAs 
(FDR < 0.05) using the ChIP-X Enrichment Analysis ver-
sion 3 (ChEA3) [52] with default parameters.
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